LT430TX ATX Motherboard Technical Product Specification

April, 1997

Order Number 677032-001

Revision History

Revision	Revision History	Date
-001	Production Review.	10 April 97

This product specification applies only to standard LT430TX motherboards with BIOS identifier LT430TX0.86A.

Changes to this specification will be published in the LT430TX Motherboard Specification Update before being incorporated into a revision of this document.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel retains the right to make changes to specifications and product descriptions at any time, without notice.

The LT430TX motherboard may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

[†] Third-party brands and names are the property of their respective owners.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation P.O. Box 7641 Mt. Prospect, IL 60056-7641

or call in North America 1-800-879-4683, Europe 44-0-1793-431-155, France 44-0-1793-421-777, Germany 44-0-1793-421-333, other Countries 708-296-9333.

Copyright © 1997, Intel Corporation. All Rights Reserved.

Contents

IVIO	tnerboa	ard Description	
1.1	Overvie	ew	7
1.2	Mother	board Manufacturing Options	9
1.3		actor	
1.4	I/O Shi	eld	
1.5	Micropr	ocessor	12
	1.5.1	Microprocessor Upgrade	
1.6	Memor	y	
	1.6.1	Main Memory	
	1.6.2	Second Level Cache	
1.7		t	
	1.7.1	430TX System Controller (MTXC)	
	1.7.2	430TX PCI ISA IDE Xcelerator (PIIX4)	
	1.7.3	Universal Serial Bus (USB) Support	
	1.7.4	IDE Support	
1.8		/O Controller	
	1.8.1	Serial Ports	
	1.8.2	Parallel Port	
	1.8.3	Floppy Controller	
	1.8.4	Keyboard and Mouse Interface	
	1.8.5	Infrared Support	
1.9		ement Extension Component	
_	_	on LAN Header	
		cs Subsystem	
	1.11.1	Graphics Controller	
		VESA/ATI Multimedia Channel Connector	
1.12		Subsystem	
		Yamaha OPL4-ML	
	1.12.2	Audio Drivers and Utilities	
	1.12.3	Audio Connectors	
	1.12.4	CD-ROM Audio Connector	
1.13		board Connectors	
	1.13.1	Power Supply Connector	
	1.13.2	Front Panel Connectors	
	1.13.3	Back Panel Connectors	
1.14		Board Expansion Connectors	
		Settings	
	1.15.1	Processor Configuration (J9C1-C, D)	39
	1.15.2	Password Clear (J9C1-A)	
	1.15.3	Clear CMOS (J9C1-A)	
	1.15.4	BIOS Setup Access (J9C1-B)	
	1.15.5	BIOS Recovery (J8A1)	
	1.15.6	Processor Voltage (J6M2)	

Contents

			ity	
			mental	
	1.18		Consumption	
		1.18.1	11 7	
	1.19	Regulat	ory Compliance	
		1.19.1	Safety	
		1.19.2	EMI	
		1.19.3	Product Certification Markings	43
2	Mot		rd Resources	
	2.1		/ Мар	
	2.2		nannels	
	2.3)	
	2.4		nfiguration Space Map	
	2.5		ts	
	2.6	PCI Inte	errupt Routing Map	49
3	BIO		Setup Program	
	3.1		ction	
		3.1.1	BIOS Flash Memory Organization	
		3.1.2	BIOS Upgrades	
		3.1.3	Plug and Play: PCI Auto-configuration	
		3.1.4	PCI IDE Support	
		3.1.5	ISA Plug and Play	
		3.1.6	ISA Legacy Devices	
		3.1.7	Desktop Management Interface	
		3.1.8	Advanced Power Management	
		3.1.9	Language Support	
		3.1.10	Boot Options	
		3.1.11	OEM Logo or Scan Area	
		3.1.12	USB Support	
		3.1.13	BIOS Setup Access Jumper	
		3.1.14	Recovering BIOS Data	
	3.2		etup Program	
		3.2.1	Overview of the Setup Menu Screens	
		3.2.2	Main Menu	
		3.2.3	Primary/Secondary IDE Master/Slave Configuration Submenus	
		3.2.4	Advanced Menu	
		3.2.5	Security Menu	
		3.2.6	Power Menu	
		3.2.7	Boot Menu	
		3.2.8		
4		or Mess	<u> </u>	
	4.1		rror Messages	
	4.2	Port 80l	h POST Codes	71

5	Spe	cifications and Online Support	
	5.1	Specifications	77
	5.2	Online Support	78
Fic	gure	s	
•	1.	Motherboard Components	8
	2.	Motherboard Dimensions	
	3.	Back Panel I/O Shield Dimensions	
	4.	Motherboard Connectors	
	5.	Front Panel I/O Connectors	
	6.	Back Panel I/O Connectors	
	7.	Jumper Locations	
Та	bles		
	1.	ATI-264GT Rage II+ Maximum Refresh Rates at Different Resolutions	
	2.	Optional CD-ROM Audio Connector (J2G2)	
	3.	Optional ATAPI Audio Connector (J2G1)	
	4.	Optional Line-In Audio Input Connector (J2H3)	
	5.	Optional Telephony Connector (J2H4)	
	6.	Serial Port 2 Header (J2J1)	
	7.	CPU Fan Connector (J6M1)	
	8.	Optional Alternate CPU Fan Connector (J6M1)	
	9.	Optional Wake on LAN Header (J6J1)	
	10.	Floppy Drive Connector (J7L2)	
	11.	GPIO Header (J9A1)	
	12.	PCI IDE Connectors (J9H1, J10H1)	
	13.	Chassis Fan Connector (J9A2)	
	14.	Optional VESA/ATI Multimedia Channel Connector (J5F1)	
	15.	Power Supply Connector (J7L1)	
	16.	Front Panel I/O Connectors	
	17. 18.	PS/2 [†] Keyboard and Mouse Connectors	
	10. 19.	Parallel Port Connector	
	19. 20.	Serial Port 1 Connector	
	21.	Optional VGA Video Monitor Connector	
	22.	Optional MIDI / Game Port Connector	34 3 <i>1</i>
	23.	PCI Bus Connectors	
	24.	ISA Bus Connectors	
	2 5 .	Jumper Settings	
	26.	Jumper Settings for Processor and Bus Frequencies	
	27.	Motherboard Environmental Specifications	
	28.	DC Voltage	
	29.	Power Usage for a Static Windows [†] 95 Desktop	
	30.	Memory Map	
		···-··································	

Contents

32. I/O Map 46 33. PCI Configuration Space Map 48 34. Interrupts 48 35. PCI Interrupt Routing Map 49 36. Flash Memory Organization 51 37. Recommendations for Configuring an ATAPI Device 52 38. Overview of the Setup Menu Screens 56 39. BIOS Error Messages 69 40. Port 80h Codes 71 41. Compliance with Specifications 77	31.	DMA Channels	45
33. PCI Configuration Space Map 48 34. Interrupts 48 35. PCI Interrupt Routing Map 49 36. Flash Memory Organization 51 37. Recommendations for Configuring an ATAPI Device 52 38. Overview of the Setup Menu Screens 56 39. BIOS Error Messages 69 40. Port 80h Codes 71	32.	I/O Map	46
34. Interrupts4835. PCI Interrupt Routing Map4936. Flash Memory Organization5137. Recommendations for Configuring an ATAPI Device5238. Overview of the Setup Menu Screens5639. BIOS Error Messages6940. Port 80h Codes71			
36. Flash Memory Organization5137. Recommendations for Configuring an ATAPI Device5238. Overview of the Setup Menu Screens5639. BIOS Error Messages6940. Port 80h Codes71			
36. Flash Memory Organization5137. Recommendations for Configuring an ATAPI Device5238. Overview of the Setup Menu Screens5639. BIOS Error Messages6940. Port 80h Codes71	35.	PCI Interrupt Routing Map	49
38. Overview of the Setup Menu Screens			
39. BIOS Error Messages 69 40. Port 80h Codes 71	37.	Recommendations for Configuring an ATAPI Device	52
40. Port 80h Codes71	38.	Overview of the Setup Menu Screens	56
40. Port 80h Codes71	39.	BIOS Error Messages	69
41. Compliance with Specifications77			
	41.	Compliance with Specifications	77

1 Motherboard Description

1.1 Overview

The LT430TX motherboard supports Pentium[®] processors and Pentium processors with MMX[™] technology. The motherboard features:

- ATX form factor
- Socket 7 Pentium OverDrive® processor socket

Main Memory

- Two 168-pin DIMM sockets
- Support for up to 256 MB of:
 - extended data out (EDO) memory
 - unbuffered 4-clock synchronous DRAM (SDRAM) memory
- Up to 64 MB of main memory cacheable

Second Level Cache Memory

- 512 KB pipeline burst static RAM (PBSRAM) soldered to the motherboard
- Optional 256 KB pipeline burst static RAM (PBSRAM) soldered to the motherboard

Chipset and PCI/IDE Interface

- Intel 82430TX PCIset
- Integrated PCI bus mastering controller
- Two fast IDE interfaces
- Support for up to four IDE drives or devices
- Support for LS-120 removable media IDE drives
- Support for Ultra DMA 33 drives

I/O Features

- PC87307VUL I/O controller
- Integrates standard I/O functions: floppy drive interface, one multimode parallel port, two FIFO serial ports, keyboard and mouse controller, IrDA[†]-compatible interface
- Support for two Universal Serial Bus (USB) interfaces
- Expansion Slots

Standard version (without video option):

- Three PCI
- Two ISA
- One shared PCI/ISA

With optional video subsystem:

- Three PCI
- Three ISA

Audio Subsystem

- Optional Yamaha OPL3-SA3 3-D audio codec soldered to the motherboard
- Optional OPL4-ML wavetable synthesizer soldered to the motherboard

Video Subsystem

- Optional ATI[†]-264GT Rage II+ 3-D graphics controller
- Optional VESA[†]/ATI Multimedia Channel connector

Other features

- Plug and Play compatible
- Support for Advanced Power Management

Software drivers and utilities are available from Intel.

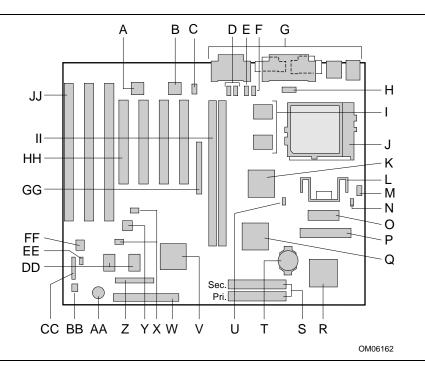


Figure 1. Motherboard Components

Α	Optional Yamaha OPL3-SA3 audio codec	S	IDE connectors
В	Optional Yamaha OPL4-ML component	Т	Battery
С	Optional Wavetable upgrade header	U	Optional Wake on LAN [†] header
D	Optional CD-ROM audio connectors	V	Optional ATI-264GT Rage II+ graphics controller
Е	Optional Line-in audio input connector	W	Front panel header
F	Optional Telephony connector	Χ	Optional Wavetable daughter card headers
G	Back panel I/O connectors	Y	Optional Management Extension component (LM78)
Н	Serial port 2 header	Z	Configuration jumper block
I	512 KB PBSRAM cache (Option of 256 KB)	AA	Onboard speaker
J	Socket 7 Pentium processor socket	BB	Chassis Fan connector
K	82371AB MTXC system controller	CC	GPIO header
L	Linear voltage regulator	DD	2 MB of SGRAM video memory
M	CPU Fan connector	EE	BIOS recovery jumper
Ν	Processor voltage jumper	FF	2 Mbit TSOP flash memory device
0	Power connector	GG	Optional VESA/ATI Multimedia Channel connector
Р	Floppy drive connector	НН	PCI connectors
Q	82430TX PIIX4 PCI ISA IDE Xcelerator	П	DIMM sockets
R	PC87307VUL I/O controller	JJ	ISA connectors

1.2 Motherboard Manufacturing Options

- ATI-264GT Rage II+ 3-D graphics controller with 2 MB of SGRAM
- VESA/ATI Multimedia Channel connector
- Unshrouded floppy disk and IDE controller connectors
- Wake on LAN header
- Management Extension component (LM78)
- Yamaha OPL4-ML component
- Wavetable daughter card headers
- Wavetable upgrade header
- Yamaha OPL3-SA3 audio codec
- 256 KB PBSRAM cache

1.3 Form Factor

The motherboard is designed to fit into a standard ATX form factor chassis. Figure 2 illustrates the form factor for the motherboard. The locations of the I/O connectors and mounting holes are in strict compliance with the ATX specification (see Section 5.1).

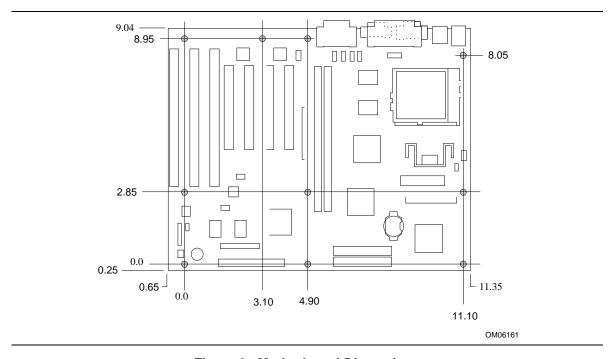


Figure 2. Motherboard Dimensions

1.4 I/O Shield

The back panel I/O shield for the LT430TX motherboard must meet specific dimensional and material requirements. Computers based on this motherboard need the back panel I/O shield in order to pass certification testing. Figure 3 shows the critical dimensions for the I/O shield and indicates the position of each cutout. The example shown is Intel chassis-specific and will not necessarily work with other chassis types.

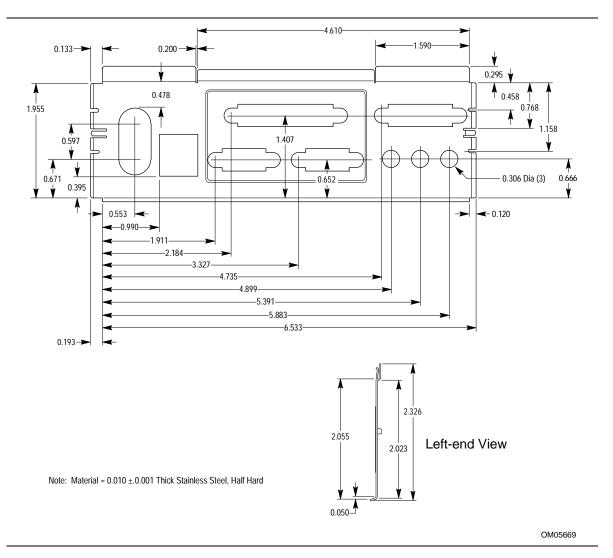
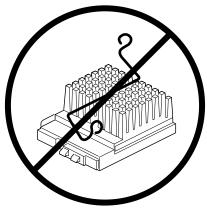


Figure 3. Back Panel I/O Shield Dimensions

1.5 Microprocessor

The motherboard supports:


- Pentium processors operating at 90, 100, 120, 133, 150, 166, and 200 MHz
- Pentium processors with MMX technology operating at 166 and 200 MHz

An onboard voltage regulator derives the necessary voltage from the computer's power supply and enables use of standard or VRE-specified processors. The motherboard automatically detects the type of processor (Pentium processor or Pentium processor with MMX technology).

A CAUTION

If you use clips to secure a heat sink to the processor, do not use bail-wire style heat sink clips, such as the type shown in the figure to the right. These clips have been known to damage the motherboard when installed or removed incorrectly.

OM05908

1.5.1 **Microprocessor Upgrade**

The motherboard has a 321-pin Socket 7 zero insertion force (ZIF) microprocessor socket. Socket 7 supports upgrades to higher performance Pentium OverDrive processors not supported by Socket 5.

1.6 Memory

1.6.1 Main Memory

The motherboard has two 168-pin DIMM sockets. Memory can be installed in one or two sockets. Minimum memory size is 8 MB. Maximum memory size is 256 MB. The BIOS automatically detects memory type, size, and speed so no jumper settings are required.

The motherboard supports the following:

- 168-pin 3.3 V DIMMs with tin-plated contacts
- 60 and 66 MHz bus speeds
- 60 ns 3.3 V EDO DRAM
- 60 ns unrestricted CAS Latency 2 unbuffered 4-clock 3.3 V SDRAM
- Caching for the first 64 MB of main memory
- 64-bit data path
- Single- or double-sided DIMMs in the following sizes:

DIMM size	Туре	Configuration	Technology
8 MB	60 ns EDO	1M x 64	16 Mbit
16 MB	60 ns EDO	2M x 64	16 Mbit
32 MB	60 ns EDO	4M x 64	16 Mbit
64 MB	60 ns EDO	8M x 64	16 Mbit
8 MB	CAS Latency 2 SDRAM	1M x 64	16 Mbit
16 MB	CAS Latency 2 SDRAM	2M x 64	16 Mbit
32 MB	CAS Latency 2 SDRAM	4M x 64	16 Mbit
64 MB	CAS Latency 2 SDRAM	8M x 64	64 Mbit
128 MB	CAS Latency 2 SDRAM	16M x 64	64 Mbit

Memory type, size, and speed can vary between sockets, so EDO and SDRAM can be installed on the same motherboard. Parity (x 72) DIMMs can be installed but are not recommended for the following reasons:

- The motherboard does not provide parity checking or ECC
- Parity DIMMs cause excessive capacitive loading on memory data and address lines

1.6.1.1 EDO DRAM

EDO DRAM improves memory read performance by holding the memory data valid until the next CAS# falling edge, unlike fast page mode DRAM, which tri-states the memory data when CAS# negates to precharge for the next memory cycle. With EDO DRAM, the CAS# precharge overlaps the data-valid time, which allows CAS# to negate earlier while still satisfying the memory data-valid window.

1.6.1.2 SDRAM

Synchronous DRAM (SDRAM) is designed to improve main memory performance. Unlike fast page or EDO DRAM, SDRAM is synchronous with the memory clock. This simplifies the timing design and increases memory speed because all timing is dependent on the number of memory clock cycles. SDRAM DIMM modules should meet the Intel "4-clock 66 MHz 64-bit unbuffered SDRAM DIMM, V. 1.0" specification.

A CAUTION

The board does not support SDRAM DIMMs with an n x 4 DRAM base due to loading anomalies. For example, a DIMM that uses sixteen 16 Mbit x 4 devices should not be used.

■ NOTE

The LT430TX supports unbuffered, 4-clock 3.3 V SDRAM DIMMs only. Buffered, 5 V, or 2-clock SDRAM DIMMs should not be used.

1.6.2 **Second Level Cache**

The 512 KB direct-mapped write-back L2 cache consists of two 64K x 32 global write enable (GWE) pipeline burst static RAMs (PBSRAMs) and a 32K x 8 external tag SRAM. These devices are soldered to the motherboard.

The 256KB L2 cache substitutes two 32K x 32 PBSRAMs.

1.7 Chipset

The Intel 82430TX PCIset consists of the TX System Controller (MTXC) device and the PCI ISA IDE Xcelerator (PIIX4) device.

1.7.1 430TX System Controller (MTXC)

The MTXC integrates the cache and main memory DRAM control functions and provides bus control to handle transfers between the processor, cache, main memory, and the PCI bus. The MTXC allows PCI masters to achieve full PCI bandwidth by using the snoop ahead feature. For increased system performance the MTXC integrates posted write and read prefetch buffers. The MTXC comes in a 324-pin MBGA package that features:

- Microprocessor interface control
- Integrated L2 write-back cache controller
 - Supports pipeline burst SRAM
 - 64 MB maximum DRAM cacheability
 - Direct mapped organization—write back only
 - Cache hit read/write cycle timings at 3-1-1-1
 - Back to back read/write cycles at 3-1-1-1-1-1-1

- Integrated DRAM controller
 - 8 MB to 256 MB main memory
 - 64-Mbit DRAM/SDRAM technology support
 - 3.3 V EDO and unbuffered synchronous DRAM support
 - Non-parity (x64) support only
- Fully synchronous minimum latency PCI bus interface
 - PCI compliance (see Section 5.1 for compliance level)
 - 30 and 33 MHz bus speeds
 - PCI to DRAM data throughput at greater than 100 MB/sec
 - Up to four PCI masters in addition to the PIIX4
- Power management control
 - Provides PCI CLKRUN# signal to control memory clock on the PCI bus (on/off)
 - Internal clock control (gated off if no host or PCI bus activity)

1.7.2 430TX PCI ISA IDE Xcelerator (PIIX4)

The Intel 430TX PCI ISA IDE Xcelerator (PIIX4) is a multifunction PCI device implementing a PCI to ISA bridge, PCI IDE functionality, a Universal Serial Bus (USB) host/hub function, and Enhanced Power Management. The PIIX4 comes in a 324-pin MBGA package that features:

- Multifunction PCI to ISA bridge
 - Supports the PCI bus at 30 and 33 MHz
 - PCI compliant (see Section 5.1 for compliance level)
 - Full ISA or extended I/O (EIO) bus support
- USB controller
 - Two USB ports (see Section 5.1 for compliance level)
 - Supports legacy keyboard and mouse
 - Supports UHCI design guide revision 1.1 interface
- Integrated dual-channel enhanced IDE interface
 - Support for up to four IDE devices
 - PIO Mode 4 transfers at up to 14 MB/sec
 - Supports "Ultra DMA/33" synchronous DMA mode transfers up to 33 MB/sec
 - Integrated 8 x 32-bit buffer for bus master PCI IDE burst transfers
 - Bus master mode
- Enhanced DMA controller
 - Two 8237-based DMA controllers
 - Supports PCI DMA with three PC/PCI channels and distributed DMA protocols
 - Fast type-F DMA for reduced PCI bus usage
- Interrupt controller based on 82C59
 - Support for 15 interrupts
 - Programmable for edge/level sensitivity

- Power management logic
 - Sleep/resume logic
 - Supports thermal alarm
 - Support for Wake On Modem through Ring Indicate input
 - Support for Wake on LAN through LID input
- Real-Time Clock
 - 256 byte battery-backed CMOS SRAM
 - Includes date alarm
- 16-bit counters/timers based on 82C54

1.7.3 Universal Serial Bus (USB) Support

The motherboard features two USB ports. The ports permit the direct connection of two USB peripherals without an external hub. If more devices are required, an external hub can be connected to either of the built-in ports. The motherboard fully supports the standard universal host controller interface (UHCI) and uses standard software drivers that are UHCI-compatible. Features of the USB include:

- Self-identifying, hot pluggable peripherals
- Automatic mapping of function to driver and configuration
- Support for isochronous and asynchronous transfer types over the same set of wires
- Support for up to 127 physical devices
- Guaranteed bandwidth and low latencies appropriate for telephony, audio, and other applications
- Error handling and fault recovery mechanisms built into protocol

⇒ NOTE

Computers that have an unshielded cable attached to the USB port might not meet FCC Class B requirements, even if no device or a low speed USB device is attached to the cable. Use shielded cable that meets the requirements for full speed devices.

1.7.4 IDE Support

The motherboard has two independent bus mastering PCI IDE interfaces that support PIO Mode 3, PIO Mode 4, ATA-33 (Ultra DMA-33), and ATAPI (e.g., CD-ROM) devices. The BIOS supports Logical Block Addressing (LBA) and Extended Cylinder Head Sector (ECHS) translation modes. IDE device transfer rate and translation mode are automatically detected by the BIOS.

Normally, programmed I/O operations require a substantial amount of processor bandwidth; however, in multi-tasking operating systems like Windows[†] 95, the bandwidth freed by bus mastering IDE can be devoted to other tasks while disk transfers are occurring.

1.7.4.1 LS-120 Support

LS-120 MB Diskette technology enables users to store 120 MB of data on a single, 3.5-inch removable diskette. LS-120 technology is backward (both read and write) compatible with 1.44 MB and 720 KB DOS-formatted diskettes and is supported by Windows 95 and Windows NT[†] operating systems.

The LT430TX motherboard allows connection of an LS-120 compatible drive and a standard 3.5-inch diskette drive. The LS-120 drive can be configured as a boot device, if selected in the BIOS setup utility.

⇒ NOTE

If you connect an LS-120 drive to an IDE connector and configure it as the "A" drive and configure a standard 3.5-inch floppy as a "B" drive, the standard floppy must be connected to the floppy drive cable's "A" connector (the connector at the end of the cable).

1.8 Super I/O Controller

The PC87307VUL Super I/O Controller from National Semiconductor is an ISA Plug and Play compatible (see Section 5.1 for compliance level), multifunction I/O device that provides the following features:

- Serial ports:
 - Two 16450/16550A-software compatible UARTs
 - Send/receive 16-byte FIFO
 - Four 8-bit DMA options for the UART with Slow Infrared Support (USI)
 - Ring indicator support for both serial ports
- Multimode bidirectional parallel port
 - Standard mode, IBM[†] and Centronics[†] compatible
 - Enhanced Parallel Port (EPP) mode with BIOS and driver support
 - High-speed Extended Capabilities Port (ECP) mode
- Floppy disk controller
 - DP8473 and N82077 compatible
 - 16 byte FIFO
 - PS/2[†] diagnostic register support
 - CMOS disk input and output logic
 - High performance digital data separator (DDS)
 - PC-AT[†] and PS/2 drive mode support
- Keyboard and mouse controller
 - Industry standard 8042A compatible
 - General purpose microcontroller
 - 8 bit internal data bus
- Support for an IrDA and Consumer IR-compliant infrared interface

By default, the I/O controller interfaces are automatically configured during boot up. The I/O controller can also be manually configured in the Setup program.

1.8.1 Serial Ports

The motherboard has one 9-pin D-Sub serial port connector located on the back panel, and one keyed 10-pin header located on the motherboard for cabling to the back panel. The 16540 and 16550A compatible UARTs support data transfers at speeds up to 921.6 Kbits/sec, while the extended UART mode supports data rates up to 1.5 Mbits/sec.

1.8.2 Parallel Port

The connector for the multimode bidirectional parallel port is a 25-pin D-Sub connector located on the back panel of the motherboard. In the Setup program, there are four options for parallel port operation:

- Compatible (standard mode)
- Bidirectional (PS/2-compatible)
- Bidirectional Enhanced Parallel Port (EPP) (see Section 5.1 for EPP specification compliance level)
- Bidirectional Extended Capabilities Port (ECP)

1.8.3 Floppy Controller

The I/O controller is software compatible with the DP8473 and N82077 floppy drive controllers and supports both PC-AT and PS/2 modes. In the Setup program, the floppy interface can be configured for the following floppy drive capacities and sizes:

- 360 KB, 5.25-inch
- 1.2 MB, 5.25-inch
- 720 KB, 3.5-inch
- 1.2 MB, 3.5-inch (driver required)
- 1.25/1.44 MB, 3.5-inch
- 2.88 MB, 3.5-inch

1.8.4 Keyboard and Mouse Interface

PS/2 keyboard and mouse connectors are located on the back panel of the motherboard.

The 5 V lines to these connectors are protected with a PolySwitch[†] circuit that, like a self-healing fuse, reestablishes the connection after an over-current condition is removed. While this device eliminates the possibility of having to replace a fuse, power to the computer should be turned off before connecting or disconnecting a keyboard or mouse.

→ NOTE

You can plug the mouse and keyboard into either connector.

The keyboard controller contains the Phoenix Technologies[†] keyboard and mouse controller code, which provides the traditional keyboard and mouse control functions, and also supports Power On/Reset password protection. A Power On/Reset password can be specified in the Setup program.

The keyboard controller also supports software reset (<Ctrl><Alt>). This key sequence resets the computer's software by jumping to the beginning of the BIOS code and running the Power-on Self Test (POST).

1.8.5 Infrared Support

The motherboard has a 6-pin header that supports Hewlett Packard[†] HSDL-1000 compatible infrared (IR) transmitters/receivers. In the Setup program, Serial Port 2 can be directed to a connected IR device. The connection can be used to transfer files to or from portable devices like laptops, PDAs, and printers. The Infrared Data Association (IrDA) specification supports data transfers of 115 Kbits/sec at a distance of 1 meter. See Section 5.1 for IrDA specification compliance level.

1.8.5.1 Consumer Infrared Support

The motherboard has a dedicated signal pin that supports Consumer Infrared (IR) devices (remote controls). The signal pin supports receive only. Consumer IR devices can be used to control telephony functions and multimedia operations like volume and CD track changes. In this mode, data rates of up to 685.57 Kbits/sec are supported. A software and hardware interface is needed to use this feature.

1.9 Management Extension Component

The optional Management Extension component (National Semiconductor LM78) provides low-cost instrumentation capabilities designed to reduce the total cost of owning a PC when used with LANDesk® Client Manager. The hardware implementation is a single-chip ASIC. Features include:

- An integrated ambient temperature sensor
- Fan speed sensors
- Power supply voltage monitoring to detect levels above or below acceptable values
- Registers for storing POST hardware test results and error codes
- Remote reset capabilities from a remote peer or server through LANDesk Client Manager, Version 3.0 and service layers (when available)

When suggested ratings for temperature, fan speed, or voltage are exceeded, an interrupt is activated. The Management Extension component (LM78) connects to the ISA bus as an 8-bit I/O mapped device.

1.10 Wake on LAN Header

The optional header, at location J6J1, is used to implement the Wake on LAN feature. Connect this header to a PCI LAN adapter that supports the Wake on LAN feature. The adapter monitors network traffic. When the adapter detects a Magic Packet[†], it asserts a signal through the Wake on LAN header to wake up the computer. This signal can wake up the computer only when the AC power cord is still plugged into the socket and the computer is turned off. Wake on LAN can be enabled through the Boot menu in the Setup program.

A CAUTION

The computer's power supply must provide sufficient +5 VSB current to the LAN adapter; without enough +5 VSB current, the Wake on LAN feature will not function. Check the adapter's documentation for +5 VSB requirements.

1.11 Graphics Subsystem

The optional onboard graphics subsystem features the ATI-264GT Rage II+ graphics controller.

Graphics Controller 1.11.1

The optional ATI-264GT Rage II+ provides the following features:

- Drawing coprocessor that operates concurrently with the host processor
- Video coprocessor that enables simultaneous display of 24 bits per pixel (bpp) video and 8 bpp graphics
- VGA[†] and VESA compatibility
- PCI compliant
- Support for power management
- Support for VESA Display Data Channel (DDC2B)
- Video scaler, color space converter, true color palette
- Triple-clock synthesizer
- Support for ATI multimedia feature connector
- 3-D graphics capability
- PCI Bus Master

1.11.1.1 **Video Memory**

The motherboard supports 2 MB of 60 ns SGRAM for video memory, soldered to the board. There are no upgrade options for video memory.

1.11.1.2 Resolutions and Refresh Rates

Table 1. ATI-264GT Rage II+ Maximum Refresh Rates at Different Resolutions

2 MB Memory	Maximum Refresh Rate (Hz) At:			
Resolution	4-bit Color (16 Colors)	8-bit Color (256 Colors)	16-bit Color (64K Colors)	24-bit Color (16M Colors)
640 x 480	160	160	160	160
800 x 600	160	160	160	160
1024 x 768	160	160	160	not supported
1152 x 864	160	160	160	not supported
1280 x 1024	160	160	160	not supported

1.11.1.3 Graphics Drivers and Utilities

Graphics drivers and common graphics utilities are available for Windows 3.x, Windows 95, and Windows NT. Drivers and utilities are available from Intel's World Wide Web site (see Section 5.2).

1.11.2 VESA/ATI Multimedia Channel Connector

The motherboard has an optional 40-pin VESA/ATI Multimedia Channel connector that uses 26 pins for the VESA standard bus and 12 pins for the ATI Enhanced Visual Architecture bus. The connector features a shared frame buffer interface and a Local Peripheral Bus (LPB) with a bidirectional interface that supports video companion devices like MPEG/live video decoders.

1.12 Audio Subsystem

The optional onboard audio subsystem features the Yamaha OPL[†] YMF715, a 100-pin SQFP audio chip. It integrates a 16-bit audio codec, OPL3 FM synthesis and its DAC, 3-D enhanced stereo controller, and an interface for MPU-401 and a joystick. The YMF715 provides all the digital audio and analog mixing functions needed for recording and playing sound on personal computers. It features the following:

- Integrated 3-D enhanced stereo controller including all required analog components
- Stereo analog-to-digital and digital-to-analog converters
- Analog mixing, anti-aliasing, and reconstruction filters
- Support for 16-bit address decode
- Line, microphone, mono, and modem inputs
- ADPCM, A-law or μlaw digital audio compression/decompression
- Full digital control of all mixer and volume control functions
- Software switching between rear panel Mic In and Line In connectors

- Plug and Play compatibility
- Sound Blaster[†] and Windows Sound System compatibility
- Pin compatible with the Yamaha YMF711

The following table shows the IRQ, DMA channel, and base I/O address options for the audio subsystem. These options are automatically chosen by the Plug and Play interface, so there are no default settings.

	IRQ	DMA channel	I/O Address
Resource	(Options)	(Options)	(Options)
Sound Blaster	5	0	220h
(DMA playback, DMA shared with	7	1	240h
Windows Sound System capture)	9	3	220-280h
	10		
	11		
Windows Sound System	5	0	530h
(DMA playback)	7	1	E80h
	9	3	530-F48h
	10		
	11		
MPU-401			330h
(IRQ shared with Sound Blaster)			300h
			300-334h
MIDI / Game Port			201h
			201-211h
AdLib [†]			388h
			388-3F8h

1.12.1 Yamaha OPL4-ML

The optional Yamaha OPL4-ML wavetable is a ROM table containing live instrument sound samples. Wave synthesis results in richer and more realistic sounds then that of FM synthesis.

1.12.2 Audio Drivers and Utilities

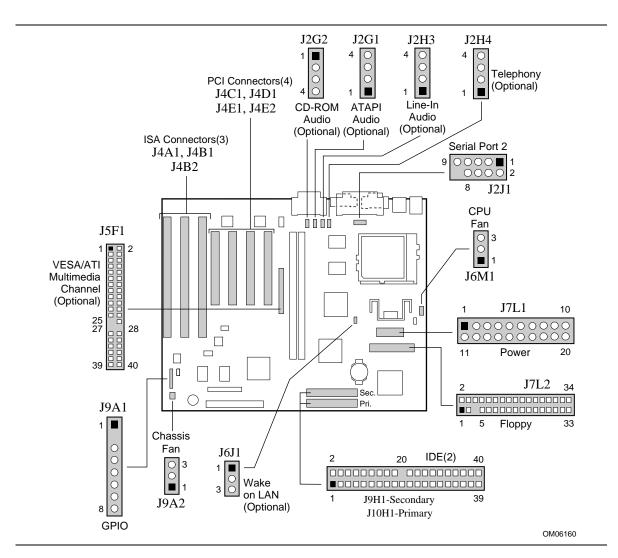
Audio software and utilities are available from Intel's World Wide Web site (see Section 5.2).

1.12.3 Audio Connectors

The board has these optional audio connectors:

- Back panel audio jacks (Line In, Line Out, Mic In)
- CD-ROM audio connector (either standard CD or optional ATAPI styles provided)
- Telephony connector (ATAPI style only)
- Line-in audio input connector (ATAPI style only)

1.12.4 CD-ROM Audio Connector


An optional 1 x 4-pin connector is available for connecting the audio output of an internal CD-ROM connector to the audio subsystem's mixer. The connector is compatible with most cables supplied with ATAPI CD-ROM headers designed to connect to audio add-in cards.

1.13 Motherboard Connectors

Figure 4 shows the connectors on the motherboard.

The following connectors are optional:

•	CD-ROM Audio	J2G2
•	Line-In Audio	J2H3
•	Wake on LAN	J6J1
•	VESA/ATI Multimedia Channel	J5F1

Figure 4. Motherboard Connectors

Table 2. Optional CD-ROM Audio Connector (J2G2)

Pin	Signal Name
1	Ground
2	CD audio left channel
3	Ground
4	CD audio right channel

Table 3. Optional ATAPI Audio Connector (J2G1)

Pin	Signal Name
1	CD audio left channel
2	Ground
3	Ground
4	CD audio right channel

Table 4. Optional Line-In Audio Input Connector (J2H3)

Pin	Signal Name
1	Left channel audio in
2	Ground
3	Ground
4	Right channel audio in

Table 5. Optional Telephony Connector (J2H4)

Pin	Signal Name
1	Mono output
2	Ground
3	Ground
4	MIC input

Table 6. Serial Port 2 Header (J2J1)

Pin	Signal Name	Pin	Signal Name
1	DCD#	2	DSR#
3	Serial In	4	RTS#
5	Serial Out	6	CTS#
7	DTR#	8	RI#
9	Ground	10	Key

Table 7. CPU Fan Connector (J6M1)

Pin	Signal Name
1	Ground
2	+12 V
3	Fan_sense (tachometer)

Table 8. Optional Alternate CPU Fan Connector (J6M1)

Pin	Signal Name
1	Ground
2	Fan_control
3	Fan_sense (tachometer)

Table 9. Optional Wake on LAN Header (J6J1)

Pin	Signal Name
1	+5 V STBY
2	Ground
3	Wake up

Table 10. Floppy Drive Connector (J7L2)

Pin	Signal Name	Pin	Signal Name
1	Ground	2	DENSEL
3	Ground	4	Reserved
5	Key	6	FDEDIN#
7	Ground	8	FDINDX# (Index)
9	Ground	10	FDM00# (Motor enable A)
11	Ground	12	FDDS1# (Drive select B)
13	Ground	14	FDDS0# (Drive select A)
15	Ground	16	FDM01# (Motor enable B)
17	MSEN1	18	FDDIR#
19	Ground	20	FDSTEP#
21	Ground	22	FDWD# (Write data)
23	Ground	24	FDWE# (Write gate)
25	Ground	26	FDTRK0# (Track 0)
27	MSEN0	28	FDWPD# (Write protect)
29	Ground	30	FDRDATA# (Read data)
31	Ground	32	FDHEAD# (Side 1 select)
33	Ground	34	DSKCHG# (Diskette change)

Table 11. GPIO Header (J9A1)

Pin	Signal Name
1	No connect
2	Key
3	GPIO1_7
4	Ground
5	GPIO1_3
6	Ground
7	GPIO1_1
8	Ground

Table 12. PCI IDE Connectors (J9H1, J10H1)

Pin	Signal Name	Pin	Signal Name
1	Reset IDE	2	Ground
3	Host data 7	4	Host data 8
5	Host data 6	6	Host data 9
7	Host data 5	8	Host data 10
9	Host data 4	10	Host data 11
11	Host data 3	12	Host data 12
13	Host data 2	14	Host data 13
15	Host data 1	16	Host data 14
17	Host data 0	18	Host data 15
19	Ground	20	Key
21	DDRQ0 [DDRQ1]	22	Ground
23	I/O write#	24	Ground
25	I/O read#	26	Ground
27	IOCHRDY	28	Vcc pull-up
29	DDACK0# [DDACK1#]	30	Ground
31	IRQ 14 [IRQ 15]	32	Reserved
33	Address 1	34	Reserved
35	Address 0	36	Address 2
37	Chip select 1P# [Chip select 1S#]	38	Chip Select 3P# [Chip select 3S#]
39	Activity#	40	Ground

NOTE: Signal names in brackets ([]) are for the secondary IDE connector

Table 13. Chassis Fan Connector (J9A2)

Pin	Signal Name
1	Ground
2	+12 V
3	Fan_sense (tachometer)

Table 14. Optional VESA/ATI Multimedia Channel Connector (J5F1)

Pin	Signal Name	Pin	Signal Name	
1	Ground	2	Data 0	
3	Ground	4	Data 1	
5	Ground	6	Data 2	
7	Data enable	8	Data 3	
9	Sync enable	10	Data 4	
11	PCLK enable	12	Data 5	
13	SDA	14	Data 6	
15	Ground	16	Data 7	
17	Ground	18	DCLK	
19	Ground	20	BLANK	
21	VFCSNS	22	HSYNC	
23	SCL	24	VSYNC	
25	Key	26	Ground	
27	Key	28	Key	
29	VCC	30	SA	
31	RST	32	SNRDY	
33	SAD	34	VMASK	
35	No connect	36	AMCREV	
37	Ground	38	+12 V	
39	No connect	40	No connect	

1.13.1 Power Supply Connector

When used with a power supply that supports remote power on/off, the motherboard can turn off the computer's power through software control. Pin 14 of the power supply connector lets the motherboard recognize a power supply that supports this "soft-off" feature; the power supply must tie pin 14 to ground.

When the BIOS receives the correct APM command from the operating system, the BIOS turns off power to the computer. For example, in the Windows 95 Start menu, the user selects Shutdown to turn off the power.

If power to the computer is interrupted by a power outage or a disconnected power cord, when power resumes, the computer returns to the off state until the power switch is pressed.

Table 15. Power Supply Connector (J7L1)

Pin	Signal Name	Pin	Signal Name
1	+3.3 V	11	+3.3 V
2	+3.3 V	12	-12 V
3	Ground	13	Ground
4	+5 V	14	PS-ON# (Power Supply Remote On/Off Control)
5	Ground	15	Ground
6	+5 V	16	Ground
7	Ground	17	Ground
8	PWRGD (Power Good)	18	-5 V
9	+5 VSB (Standby for real-time clock)	19	+5 V
10	+12 V	20	+5 V

1.13.2 Front Panel Connectors

The front panel connector includes headers for these I/O connections:

- Speaker
- Reset switch
- Sleep/Power LED
- Hard drive activity LED
- Infrared (IrDA) port
- Sleep/Resume switch
- Power switch

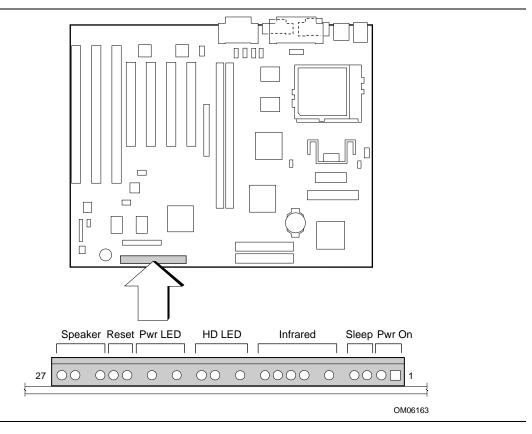


Figure 5. Front Panel I/O Connectors

Table 16. Front Panel I/O Connectors

Pin	Signal Name	Connector	
1	SW_ON#	Power On	
2	Ground		
3	SLEEP	Sleep/Resume	
4	SLEEP_PU (pullup)		
5	No connect	none	
6	+5 V	IrDA	
7	Key		
8	IrRX		
9	Ground		
10	IrTX		
11	CONIR (Consumer IR)		
12	No connect	none	
13	HD_PWR +5 V	HD LED	
14	Key		
15	HD Active#		
16	HD_PWR		
17	No connect/Key	none	
18	Ground	Sleep/Power LED	
19	Key		
20	PWR_LED		
21	No connect/Key	none	
22	Ground	Reset	
23	SW_RST	-	
24	Ground	Speaker	
25	Key	1	
26	PIEZO_IN	1	
27	SPKR_HDR		

1.13.2.1 Power On

If the user selects either the "Stay Off" or the "Last State" options from the BIOS Setup, the system will turn on for 300 ms when AC power is first applied to the board. See Section 3.2.7.1 for additional information.

A CAUTION

If you need to turn off the computer during POST, hold the power switch in for four seconds; otherwise the computer will not switch off.

1.13.2.2 Sleep/Resume

When Advanced Power Management (APM) is enabled in the BIOS and the operating system's APM driver is loaded, the computer can enter Sleep (Standby) mode in one of two ways:

- Optional front panel Sleep/Resume button
- Inactive for one to sixteen minutes, as configured in the power menu in BIOS Setup

A sleep/resume button is supported by the 2-pin header located on the front panel I/O connector. The front panel sleep/resume switch must be a momentary SPST type that is normally open.

Closing the sleep/resume switch generates a system management interrupt (SMI) to the processor, which immediately goes into system management mode (SMM). While the computer is in sleep mode it is fully capable of responding to and servicing external interrupts (such as an incoming fax) even though the monitor turns on only if a keyboard or mouse interrupt occurs. To reactivate the computer, or resume, you must press the sleep/resume button again, or use the keyboard or mouse.

1.13.2.3 Infrared connector

Serial Port 2 can be configured to support an IrDA module connected to this 6-pin header. After configuring the IrDA interface, you can transfer files to or from portable devices such as laptops, PDAs, and printers using application software.

1.13.2.4 Hard Drive (HD) LED

You can connect this header to an LED to provide a visual indicator that data is being read from or written to an IDE hard drive. For the LED to function properly, the IDE drive must be connected to the onboard IDE controller on the motherboard.

1.13.2.5 Sleep/Power LED

You can connect this header to an LED that will light when the computer is powered on. This LED will also blink when the computer is in a power-managed state.

1.13.2.6 Reset

You can connect this header to a momentary SPST type switch that is normally open. When the switch is closed, the board resets and runs the POST.

1.13.2.7 Speaker

A speaker may be installed on the motherboard as a manufacturing option. The speaker option includes a jumper on pins 26-27 of the front panel connector. You can disable the onboard speaker by removing the jumper, and you can connect an offboard speaker in its place. The speaker (onboard or offboard) provides error beep code information during the Power-on Self Test (POST) in the event that the computer cannot use the video interface. The speaker is not connected to the audio subsystem, and does not receive output from the audio subsystem.

1.13.3 Back Panel Connectors

Figure 6 shows the location of the back panel I/O connectors, which include:

- PS/2-style keyboard and mouse connectors
- Two USB connectors
- One parallel port
- One serial port
- Optional Video monitor connector
- Optional MIDI/game port
- Optional External audio jacks: Line Out, Line In, and Mic In

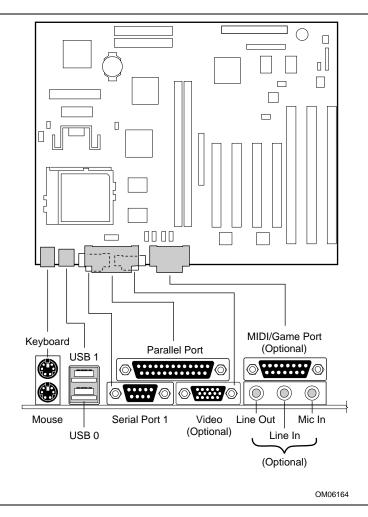


Figure 6. Back Panel I/O Connectors

Table 17. PS/2 Keyboard and Mouse Connectors

Pin	Signal Name	
1	Data	
2	No connect	
3	Ground	
4	+5 V (fused)	
5	Clock	
6	No connect	

Table 18. USB Connectors

Pin	Signal Name	
1	Power	
2	USBP0# [USBP1#]	
3	USBP0 [USBP1]	
4	Ground	

Table 19. Parallel Port Connector

Pin	Signal Name	Pin	Signal Name	
1	Strobe#	14	Auto Feed#	
2	Data bit 0	15	Fault#	
3	Data bit 1	16	INIT#	
4	Data bit 2	17	SLCT IN#	
5	Data bit 3	18	Ground	
6	Data bit 4	19	Ground	
7	Data bit 5	20	Ground	
8	Data bit 6	21	Ground	
9	Data bit 7	22	Ground	
10	ACK#	23	Ground	
11	Busy	24	Ground	
12	Error	25	Ground	
13	Select			

Table 20. Serial Port 1 Connector

Pin	Signal Name	Pin	Signal Name
1	DCD#	6	DSR#
2	Serial In	7	RTS#
3	Serial Out	8	CTS#
4	DTR#	9	RI#
5	Ground		

Table 21. Optional VGA Video Monitor Connector

Pin	Signal Name	Pin	Signal Name	
1	Red	9	+5 V fused	
2	Green	10	Ground	
3	Blue	11	No connect	
4	No connect	12	Monitor ID 1	
5	Ground	13	Horizontal Sync	
6	Ground	14	Vertical Sync	
7	Ground	15	Monitor ID 2	
8	Ground			

Table 22. Optional MIDI / Game Port Connector

Pin	Signal Name	Pin	Signal Name	
1	Power	9	Power	
2	Joystick button 0	10	Joystick button 2	
3	Joystick X1	11	Joystick X2	
4	Ground	12	MIDI out	
5	Ground	13	Joystick Y2	
6	Joystick Y1	14	Joystick button 3	
7	Joystick button 1	15	MIDI in	
8	Power			

1.14 Add-in Board Expansion Connectors

The PCI bus supports up to four bus masters through the four PCI connectors (see Section 5.1 for information about compliance with the PCI specification).

Table 23. PCI Bus Connectors

Pin	Signal Name	Pin	Signal Name	Pin	Signal Name	Pin	Signal Name
A1	+5 V (TRST#)*	B1	-12 V	A32	AD16	B32	AD17
A2	+12 V	B2	Ground (TCK)*	A33	+3.3 V	B33	C/BE2#
A3	+5 V (TMS)*	В3	Ground	A34	FRAME#	B34	Ground
A4	+5 V (TDI)*	B4	no connect (TDO)*	A35	Ground	B35	IRDY#
A5	+5 V	B5	+5 V	A36	TRDY#	B36	+3.3 V
A6	INTA#	B6	+5 V	A37	Ground	B37	DEVSEL#
A7	INTC#	B7	INTB#	A38	STOP#	B38	Ground
A8	+5 V	B8	INTD#	A39	+3.3 V	B39	LOCK#
A9	Reserved	В9	PRSNT1#	A40	SDONE	B40	PERR#
A10	+5 V (I/O)	B10	Reserved	A41	SBO#	B41	+3.3 V
A11	Reserved	B11	PRSNT2#	A42	Ground	B42	SERR#
A12	Ground	B12	Ground	A43	PAR	B43	+3.3 V
A13	Ground	B13	Ground	A44	AD15	B44	C/BE1#
A14	Reserved	B14	Reserved	A45	+3.3 V	B45	AD14
A15	RST#	B15	Ground	A46	AD13	B46	Ground
A16	+5 V (I/O)	B16	CLK	A47	AD11	B47	AD12
A17	GNT#	B17	Ground	A48	Ground	B48	AD10
A18	Ground	B18	REQ#	A49	AD09	B49	Ground
A19	PME#	B19	+5 V (I/O)	A50	Key	B50	Key
A20	AD30	B20	AD31	A51	Key	B51	Key
A21	+3.3 V	B21	AD29	A52	C/BE0#	B52	AD08
A22	AD28	B22	Ground	A53	+3.3 V	B53	AD07
A23	AD26	B23	AD27	A54	AD06	B54	+3.3 V
A24	Ground	B24	AD25	A55	AD04	B55	AD05
A25	AD24	B25	+3.3 V	A56	Ground	B56	AD03
A26	IDSEL	B26	C/BE3#	A57	AD02	B57	Ground
A27	+3.3 V	B27	AD23	A58	AD00	B58	AD01
A28	AD22	B28	Ground	A59	+5 V (I/O)	B59	+5 V (I/O)
A29	AD20	B29	AD21	A60	REQ64C#	B60	ACK64C#
A30	Ground	B30	AD19	A61	+5 V	B61	+5 V
A31	AD18	B31	+3.3 V	A62	+5 V	B62	+5 V

^{*} These signals (in parentheses) are optional in the PCI specification and are not implemented on this motherboard.

Table 24. ISA Bus Connectors

Pin	Signal Name	Pin	Signal Name	
B1	Ground	A1	IOCHK# (IOCHCK#)	
B2	RESET (RESDRV)	A2	SD7	
В3	+5 V	A3	SD6	
B4	IRQ9	A4	SD5	
B5	-5 V	A5	SD4	
B6	DRQ2	A6	SD3	
B7	-12 V	A7	SD2	
B8	SRDY# (NOWS#)	A8	SD1	
B9	+12 V	A9	SD0	
B10	Ground	A10	IOCHRDY (CHRDY)	
B11	SMEMW# (SMWTC#)	A11	AEN	
B12	SMEMR# (SMRDC#)	A12	SA19	
B13	IOW# (IOWC#)	A13	SA18	
B14	IOR# (IORC#)	A14	SA17	
B15	DACK3#	A15	SA16	
B16	DRQ3	A16	SA15	
B17	DACK1#	A17	SA14	
B18	DRQ1	A18	SA13	
B19	REFRESH#	A19	SA12	
B20	BCLK	A20	SA11	
B21	IRQ7	A21	SA10	
B22	IRQ6	A22	SA9	
B23	IRQ5	A23	SA8	
B24	IRQ4	A24	SA7	
B25	IRQ3	A25	SA6	
B26	DACK2#	A26	SA5	
B27	TC	A27	SA4	
B28	BALE	A28	SA3	
B29	+5 V	A29	SA2	
B30	OSC	A30	SA1	
B31	Ground	A31	SA0	

Note: Items in parentheses are alternate versions of signal names.

continued 🗢

Table 24. ISA Bus Connectors (continued)

Pin	Signal Name	Pin	Signal Name
Key		Key	
D1	MEMCS16# (M16#)	C1	SBHE#
D2	IOCS16# (IO16#)	C2	LA23
D3	IRQ10	C3	LA22
D4	IRQ11	C4	LA21
D5	IRQ12	C5	LA20
D6	IRQ15	C6	LA19
D7	IRQ14	C7	LA18
D8	DACK0#	C8	LA17
D9	DRQ0	C9	MEMR# (MRDC#)
D10	DACK5#	C10	MEMW# (MWTC#)
D11	DRQ5	C11	SD8
D12	DACK6#	C12	SD9
D13	DRQ6	C13	SD10
D14	DACK7#	C14	SD11
D15	DRQ7	C15	SD12
D16	+5 V	C16	SD13
D17	Master16# (MASTER#)	C17	SD14
D18	Ground	C18	SD15

Note: Items in parentheses are alternate versions of signal names.

1.15 Jumper Settings

Figure 7 shows the location of jumper blocks on the motherboard.

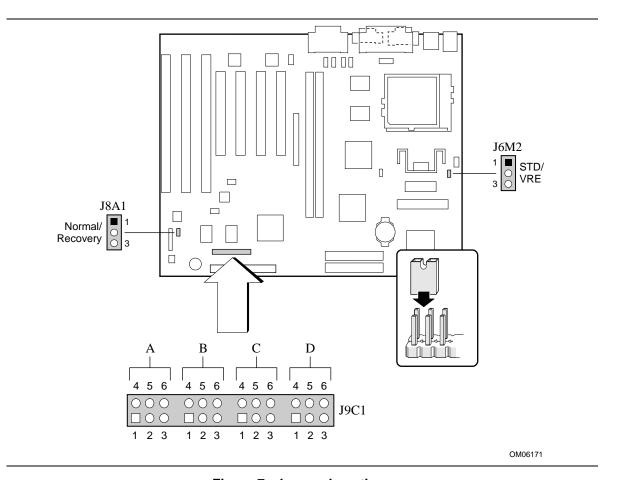


Figure 7. Jumper Locations

A CAUTION

Do not move any of the jumpers with the power on. Always turn off the power and unplug the power cord from the computer before changing jumpers. Changing the jumper settings when the power is off ensures that the changes will be recognized.

Table 25. Jumper Settings

Function	Jumper	Configuration
Processor Voltage	J6M2	1-2 Standard voltage2-3 VRE voltage (Default)
Password	J9C1-A	1-2 Password enabled (Default)2-3 Password clear/disabled
CMOS (NVRAM and ESCD) Clear	J9C1-A	4-5 Keep (Default) 5-6 Clear
BIOS Setup Access	J9C1-B	1-2 Access enabled (Default) 2-3 Access denied
Reserved	J9C1-B	4-5 (Reserved) 5-6 (Reserved)
Host Bus Frequency*	J9C1-C	See Table 26
Processor Frequency	J9C1-D	See Table 26
BIOS recovery	J8A1	1-2 Normal (Default) 2-3 Recovery

^{*} These jumpers also set the PCI and ISA bus frequencies.

1.15.1 Processor Configuration (J9C1-C, D)

The motherboard must be configured for the frequency of the installed processor. Table 26 shows the jumper settings for each frequency and the corresponding host bus, PCI bus, and ISA bus frequencies.

Table 26. Jumper Settings for Processor and Bus Frequencies

Processor Freq. (MHz)	Jumpers J9C1-C	Jumpers J9C1-D	Host Bus Freq. (MHz)	PCI Bus Freq. (MHz)	ISA Bus Freq. (MHz)	Bus/Processor Freq. Ratio
200	5-6	1-2 and 5-6	66	33	8.33	3
166	5-6	2-3 and 5-6	66	33	8.33	2.5
150	4-5	2-3 and 5-6	60	30	7.5	2.5
133	5-6	2-3 and 4-5	66	33	8.33	2
120	4-5	2-3 and 4-5	60	30	7.5	2
100	5-6	1-2 and 4-5	66	33	8.33	1.5
90	4-5	1-2 and 4-5	60	30	7.5	1.5

⇒ NOTE

There are no separate or additional jumpering requirements for Pentium processors with MMX technology.

1.15.2 Password Clear (J9C1-A)

Use this jumper to clear the password if the password is forgotten. The default setting is pins 1-2 (password enabled). To clear the password, turn off the computer, move the jumper to pins 2-3, and turn on the computer. Then, turn off the computer and return the jumper to pins 1-2 to restore normal operation. If the jumper is in the 2-3 position (password disabled), you cannot set a password.

1.15.3 Clear CMOS (J9C1-A)

This jumper resets the CMOS settings to the default values. This procedure must be done each time the BIOS is updated. The default setting for this jumper is pins 4-5 (keep CMOS settings). To reset the CMOS settings to the default values, turn off the computer, move the jumper to pins 5-6, then turn on the computer. When the computer displays the message "NVRAM cleared by jumper," turn off the computer and return the jumper to pins 4-5 to restore normal operation.

1.15.4 **BIOS Setup Access (J9C1-B)**

This jumper enables or disables access to the Setup program. The default setting is pins 1-2 (access enabled). To disable access to the Setup program, move the jumper to pins 2-3.

1.15.5 **BIOS Recovery (J8A1)**

This jumper lets you recover the BIOS data from a diskette in the event of a catastrophic failure. The default setting is pins 1-2 (normal operation). To recover the BIOS, turn off the computer, move the jumper to pins 2-3, then turn on the computer to perform BIOS recovery. After recovery, turn off the computer and return the jumper to pins 1-2 to restore normal operation. See Section 3.1.14 for more details.

1.15.6 **Processor Voltage (J6M2)**

This jumper sets the output of the onboard voltage regulator. For processors that require Standard voltage, place the jumper on pins 1-2. For processors that require VRE voltage, place the jumper on pins 2-3. Voltage specifications are as follow:

- Standard = 3.3 3.465 V
- VRE = 3.465 3.63 V

A CAUTION

When installing a processor in the motherboard for the first time or upgrading to a new processor, check the processor's documentation for the correct voltage setting. Operating the processor at the wrong voltage can cause unreliable performance.

1.16 Reliability

The Mean-Time-Between-Failures (MTBF) data is calculated from predicted data at 55 °C.

Motherboard MTBF: 73,478 hours @ 55 °C

1.17 Environmental

Table 27. Motherboard Environmental Specifications

Parameter	Specification
Temperature	
Non-Operating	-40 °C to +70 °C
Operating	0 °C to +55 °C
Vibration	
Unpackaged	5 Hz to 20 Hz: 0.01 g ² Hz sloping up to 0.02 g ² Hz
	20 Hz to 500 Hz: 0.02 g ² Hz (flat)
Packaged	10 Hz to 40 Hz: 0.015 g ² Hz (flat)
	40 Hz to 500 Hz: 0.015 g ² Hz sloping down to 0.00015 g ² Hz

1.18 Power Consumption

Tables 28 and 29 list voltage and current specifications for a computer that contains the motherboard, a 200 MHz Pentium processor with MMX technology, 32 MB SDRAM, 256 KB cache, 2 MB SGRAM graphics memory, a 3.5-inch floppy drive, a 1.6 GB hard drive, an 8X IDE CD-ROM, and a 28.8 Kbits/sec ISA faxmodem. This information is preliminary and is provided only as a guide for calculating **approximate** power usage with additional resources added.

⇒ NOTE

AC power measurements include all peripheral components mentioned above. DC current measurements include only the motherboard components.

Table 28. DC Voltage

DC Voltage	Acceptable Tolerance
+3.3 V	± 5%
+5 V	± 5%
-5 V	± 5%
+12 V	± 5%
-12 V	± 5%

Table 29. Power Usage for a Static Windows 95 Desktop

APM Mode	System AC (watts)	Motherboard DC (amps)				
		+3.3 V	+5 V	-5 V	+12 V	-12 V
APM disabled in BIOS	58	0.9	5.0	0.01	0.16	0.03
Maximum power savings	28	0.6	2.0	0.01	0.13	0.03

1.18.1 Power Supply Considerations

The motherboard is designed to operate with at least a 200 W ATX power supply for typical configurations or a higher wattage supply for heavily loaded configurations. The power supply must meet the following requirements:

- Rise time for power supply: 2 ms to 20 ms
- Minimum delay for Reset to Power Good: 100 ms
- Minimum Powerdown warning: 1 ms
- 3.3 V output must reach its minimum regulation level within \pm 20 ms of the 5 V output reaching its minimum regulation level

1.19 Regulatory Compliance

This printed circuit assembly complies with the following safety and EMI regulations when correctly installed in a compatible host system.

1.19.1 **Safety**

1.19.1.1 UL 1950 - CSA 950-95, 3rd edition, Dated 3-28-95

The Standard for Safety of Information Technology Equipment including Electrical Business Equipment. (USA & Canada)

1.19.1.2 CSA C22.2 No. 950-93, 3rd Edition

The Standard for Safety of Information Technology Equipment including Electrical Business Equipment. (Canada)

1.19.1.3 EN 60 950, 2nd Edition, 1992 (with Amendments 1, 2 & 3)

The Standard for Safety of Information Technology Equipment including Electrical Business Equipment. (European Union)

1.19.1.4 IEC 950, 2nd edition, 1991 (with Amendments 1, 2 & 3)

The Standard for Safety of Information Technology Equipment including Electrical Business Equipment. (International)

1.19.1.5 EMKO-TSE (74-SEC) 207/94

Summary of Nordic deviations to EN 60 950. (Norway, Sweden, Denmark & Finland)

1.19.2 EMI

1.19.2.1 FCC Class B

Title 47 of the Code of Federal Regulations, Parts 2 & 15, Subpart B, pertaining to unintentional radiators. (USA)

1.19.2.2 CISPR 22, 2nd Edition, 1993

Limits and methods of measurement of Radio Interference Characteristics of Information Technology Equipment. (International)

1.19.2.3 EN 55 022, 1995

Limits and methods of measurement of Radio Interference Characteristics of Information Technology Equipment. (Europe)

1.19.2.4 EN 50 082-1 (1992)

Generic Immunity Standard; Currently compliance is determined via testing to IEC 801-2, -3 and -4. (Europe)

1.19.2.5 VCCI Class 2 (ITE)

Implementation Regulations for Voluntary Control of Radio Interference by Data Processing Equipment and Electronic Office Machines. (Japan)

1.19.2.6 ICES-003, Issue 2

Interference-Causing Equipment Standard, Digital Apparatus. (Canada)

1.19.3 Product Certification Markings

This printed circuit assembly has the following product certification markings:

- European CE Marking: Consists of a marking on the board or shipping container.
- UL Recognition Mark: Consists of the UL File No. E139761 on the component side of the board and the PB No. on the solder side of the board. Board material flammability is 94V-1 or -0.
- Canadian Compliance: Consists of small c followed by a stylized backward UR on component side of board.

2 Motherboard Resources

■ NOTE

For more detailed information about the resources used for onboard audio, see the Audio Subsystem section in Chapter 1.

2.1 Memory Map

Table 30. Memory Map

Address Range (decimal)	Address Range (hex)	Size	Description
1024 K - 262144 K	100000 - 10000000	255 MB	Extended Memory
960 K - 1024 K	F0000 - FFFFF	64 K	BIOS
944 K - 960 K	EC000 - EFFFF	16 K	Boot Block (available as UMB)
936 K - 944 K	EA000 - EBFFF	8 K	ESCD (Plug and Play configuration and DMI)
932 K - 936 K	E9000 - E9FFF	4 K	Reserved for BIOS
928 K - 932 K	E8000 - E8FFF	4 K	OEM Logo or Scan User Flash
896 K - 928 K	E0000 - E7FFF	32 K	POST BIOS (available as UMB)
800 - 896 K	C8000 - DFFFF	96 K	Available High DOS memory (open to ISA and PCI bus)
640 K - 800 K	A0000 - C7FFF	160 K	Video memory and BIOS
639 K - 640 K	9FC00 - 9FFFF	1 K	Extended BIOS data (movable by memory manager software)
512 K - 639 K	80000 - 9FBFF	127 K	Extended conventional memory
0 K - 512 K	00000 - 7FFFF	512 K	Conventional memory

2.2 DMA Channels

Table 31. DMA Channels

DMA Channel Number	Data Width	Resource
0	8- or 16-bits	Audio
1	8- or 16-bits	Audio / Parallel Port
2	8- or 16-bits	Floppy Drive
3	8- or 16-bits	ECP parallel port / Audio
4	N/A	Reserved - Cascade Channel
5	16-bits	Open
6	16-bits	Open
7	16-bits	Open

2.3 I/O Map

Table 32. I/O Map

Address (hex)	Size	Description	
0000 - 000F	16 bytes	PIIX4 - DMA 1	
0020 - 0021	2 bytes	PIIX4 - Interrupt Controller 1	
002E - 002F	2 bytes	Super I/O Controller Configuration Registers	
0040 - 0043	4 bytes	PIIX4 - Counter/Timer 1	
0048 - 004B	4 bytes	PIIX4 - Counter/Timer 2	
0060	1 byte	Keyboard Controller Byte - Reset IRQ	
0061	1 byte	PIIX4 - NMI, Speaker Control	
0064	1 byte	Keyboard Controller, CMD/STAT Byte	
0070, bit 7	1 bit	PIIX4 - Enable NMI	
0070, bits 6:0	7 bits	PIIX4 - Real Time Clock, Address	
0071	1 byte	PIIX4 - Real Time Clock, Data	
0078	1 byte	Reserved - Board Configuration	
0079	1 byte	Reserved - Board Configuration	
0081 - 008F	16 bytes	PIIX4 - DMA Page Registers	
00A0 - 00A1	2 bytes	PIIX4 - Interrupt Controller 2	
00B2 - 00B3	2 bytes	APM Control	
00C0 - 00DE	31 bytes	PIIX4 - DMA 2	
00F0	1 byte	Reset Numeric Error	
0170 - 0177	8 bytes	Secondary IDE Channel	
01F0 - 01F7	8 bytes	Primary IDE Channel	
0201	1 byte	Audio / Game Port	
0220 - 022F	16 bytes	Audio (Sound Blaster compatible)	
0240 - 024F	16 bytes	Audio (Sound Blaster compatible)	
0278 - 027F	8 bytes	LPT2	
0290 - 0297	8 bytes	Management Hardware component (LM78)	
02E8 - 02EF	8 bytes	COM4 / Video (8514A)	
02F8 - 02FF	8 bytes	COM2	
0300 - 0301	2 bytes	MPU-401 (MIDI)	
0330 - 0331	2 bytes	MPU-401 (MIDI)	
0332 - 0333	2 bytes	MPU-401 (MIDI)	
0334 - 0335	2 bytes	MPU-401 (MIDI)	
0376	1 byte	Secondary IDE Channel Command Port	
0377	1 byte	Floppy Channel 2 Command	
0377, bit 7	1 bit	Floppy Disk Change, Channel 2	
0377, bits 6:0	7 bits	Secondary IDE Channel Status Port	
0378 - 037F	8 bytes	LPT1	

Table 32. I/O Map (continued)

Address (hex)	Size	Description	
0388- 038D	6 bytes	AdLib (FM synthesizer)	
03B4 - 03B5	2 bytes	Video (VGA)	
03BA	1 byte	Video (VGA)	
03BC - 03BF	4 bytes	LPT3	
03C0 - 03CA	11 bytes	Video (VGA)	
03CC	1 byte	Video (VGA)	
03CE - 03CF	2 bytes	Video (VGA)	
03D4 - 03D5	2 bytes	Video (VGA)	
03DA	1 byte	Video (VGA)	
03E8 - 03EF	8 bytes	COM3	
03F0 - 03F5	6 bytes	Floppy Channel 1	
03F6	1 byte	Primary IDE Channel Command Port	
03F7 (Write)	1 byte	Floppy Channel 1 Command	
03F7, bit 7	1 bit	Floppy Disk Change Channel 1	
03F7, bits 6:0	7 bits	Primary IDE Channel Status Port	
03F8 - 03FF	8 bytes	COM1	
04D0 - 04D1	2 bytes	Edge/level triggered PIC	
0530 - 0537	8 bytes	Windows Sound System	
0604 - 060B	8 bytes	Windows Sound System	
LPTn + 400h	8 bytes	ECP port, LPTn base address + 400h	
0CF8 - 0CFB*	4 bytes	PCI Configuration Address Register	
0CF9**	1 byte	Turbo and Reset Control Register	
0CFC - 0CFF	4 bytes	PCI Configuration Data Register	
0E80 - 0E87	8 bytes	Windows Sound System	
0F40- 0F47	8 bytes	Windows Sound System	
0F86 - 0F87	2 bytes	Yamaha OPL3-SA Configuration	
FF00 - FF07	8 bytes	IDE Bus Master Register	
FFA0 - FFA7	8 bytes	Primary Bus Master IDE Registers	
FFA8 - FFAF	8 bytes	Secondary Bus Master IDE Registers	
Dynamically allocated in PCI I/O space	32 bytes	USB	

^{*} DWORD access only

⇒ NOTE

See the Audio section(s) in Chapter 1 for specific I/O addresses that can be used by the audio components on your motherboard. This table does not list I/O addresses that may be used by add-in cards in the computer.

^{**} Byte access only

2.4 PCI Configuration Space Map

Table 33. PCI Configuration Space Map

Bus Number (hex)	Device Number (hex)	Function Number (hex)	Description
00	00	00	Intel 82430TX (MTXC)
00	07	00	Intel 82430TX (PIIX4) PCI/ISA bridge, function 0
00	07	01	Intel 82430TX (PIIX4) IDE Bus Master, function 1
00	07	02	Intel 82430TX (PIIX4) USB, function 2
00	07	03	Intel 82430TX (PIIX4) Power Management, function 3
00	08	00	ATI VGA Graphics
00	0D	00	PCI Expansion Slot #1 (J4E2)
00	0E	00	PCI Expansion Slot #2 (J4E1)
00	0F	00	PCI Expansion Slot #3 (J4D1)
00	10	00	PCI Expansion Slot #4 (J4C1)

2.5 Interrupts

Table 34. Interrupts

IRQ	System Resource
NMI	I/O Channel Check
0	Reserved, Interval Timer
1	Reserved, Keyboard Buffer Full
2	Reserved, Cascade Interrupt From Slave PIC
3	COM2*
4	COM1*
5	LPT2 (Plug and Play option) / Audio / User available
6	Floppy Drive
7	LPT1*
8	Real Time Clock
9	User available
10	User available / USB
11	Windows Sound System* / User available
12	Onboard Mouse Port (if present, else user available)
13	Reserved, Math Coprocessor
14	Primary IDE (if present, else user available)
15	Secondary IDE (if present, else user available)

^{*} Default, but can be changed to another IRQ

2.6 PCI Interrupt Routing Map

The PCI specification allows for sharing of interrupts between devices attached to the PCI bus. In most cases, the small amount of latency added by interrupt sharing does not affect the normal operation or throughput of the devices. However, in some special cases where maximum performance is needed from a device, you may want to ensure that it does not share an interrupt with other PCI devices.

This section describes the interrupt sharing mechanism and how the interrupt signals are connected between the motherboard's PCI expansion slots and onboard PCI devices. Use this information to avoid sharing an interrupt for a PCI add-in card.

PCI devices are categorized as follows to specify their interrupt grouping:

- INTA: By default, all add-in cards that require only one interrupt are in this category. For almost all cards that require more than one interrupt, the first interrupt on the card is also classified as INTA.
- INTB: Generally, the second interrupt on add-in cards that require two or more interrupts is classified as INTB. (This is not an absolute requirement.)
- INTC and INTD: Generally, a third interrupt on add-in cards is classified as INTC and a fourth interrupt is classified as INTD.

The PIIX4 PCI-to-ISA bridge has four Programmable Interrupt Request (PIRQ) input signals. Any PCI interrupt source (either onboard or from a PCI add-in card) connects to one of these PIRQ signals. Because there are only four signals, some PCI interrupt sources are mechanically tied together on the motherboard and therefore share the same interrupt. Table 35 lists the PIRQ signals and shows how the signals are connected to the PCI expansion slots and to onboard PCI interrupt sources.

Table 35.	PCI Interrupt Rout	ing Man
I able JJ.	I OI IIIICII UDI NOUI	IIIM IVIAD

PIIX4 PIRQ Signal	First PCI Expansion Slot: J4E2	Second PCI Expansion Slot: J4E1	Third PCI Expansion Slot: J4D1	Fourth PCI Expansion Slot: J4C1	Onboard Video	USB
PIRQA	INTA	INTD	INTC	INTB		
PIRQB	INTB	INTA	INTD	INTC		
PIRQC	INTC	INTB	INTA	INTD		
PIRQD	INTD	INTC	INTB	INTA	Х	Х

For example, assume that you plug an add-in card that has one interrupt (group INTA) into the fourth PCI slot. In this slot, an interrupt source from group INTA connects to the PIRQD signal, which is already connected to the onboard video and USB PCI sources. The add-in card shares an interrupt with these onboard interrupt sources. The PCI interrupts will dynamically configure an available interrupt on the interrupt controller contained within PIIX4.

Motherboard Resources

Now, however, plug an add-in card that has one interrupt (group INTA) into the first PCI slot. Plug a second add-in card that has two interrupts (groups INTA and INTB) into the second PCI slot. INTA in the first slot is connected to signal PIRQA. INTA in the second slot is connected to signal PIRQB, and INTB is connected to signal PIRQC. With no other cards added, the three interrupt sources on the first two cards each have a PIRQ signal to themselves. Typically, they will not share an interrupt.

⇒ NOTE

The PIIX4 can connect each PIRQ line internally to one of the IRQ signals (3,4,5,7,9,11,14,15). Typically, a device that does not share a PIRQ line will have a unique interrupt. However, in certain interrupt-constrained situations, it is possible for two or more of the PIRQ lines to be connected to the same IRQ signal.

3 BIOS and Setup Program

3.1 Introduction

The motherboard uses an Intel BIOS, which is stored in flash memory and can be upgraded using a floppy disk-based program. In addition to the BIOS, the flash memory contains the Setup program, Power-on Self Tests (POST), Advanced Power Management (APM), the PCI autoconfiguration utility, and Windows 95-ready Plug and Play. See Section 5.1 for the supported versions of these specifications.

This motherboard supports BIOS shadowing, allowing the BIOS to execute from 64-bit onboard write-protected DRAM.

The BIOS displays a sign-on message during POST identifying the type of BIOS and a revision code. The initial production BIOS on the motherboard is identified as LT430TX0.86A.

3.1.1 BIOS Flash Memory Organization

The Intel PA28FB200BX 2 Mbit Flash component is organized as 256K x 8 (256 KB). The flash device is divided into areas as described in Table 36. The table shows the addresses in the ROM image in normal mode (the addresses change in BIOS Recovery Mode).

Table 36. Flash Memory Organization

Address (Hex)	Size	Description
FFFF0000 - FFFFFFF	64 KB	Main BIOS *
FFFEC000 - FFFEFFFF	16 KB	Boot Block
FFFEA000 - FFFEBFFF	8 KB	Virtual Product Data (VPD), Extended System Configuration Data (ESCD) (DMI configuration data / Plug and Play data)
FFFE9000 - FFFE9FFF	4 KB	Used by BIOS (e.g., for Event Logging)
FFFE8000 - FFFE8FFF	4 KB	OEM logo or Scan Flash Area
FFFC0000 - FFFE7FFF	160 KB	Main BIOS Block

^{*} At runtime, only this section is shadowed into RAM below the 1 MB address

3.1.2 BIOS Upgrades

Flash memory simplifies distributing BIOS upgrades. You can install a new version of the BIOS from a diskette. BIOS upgrades are available to be downloaded from the secure section on the Intel bulletin board or from Intel's FTP or World Wide Web sites (see Section 5.2).

The disk-based flash upgrade utility has three options for BIOS upgrades:

- Update the BIOS from a file on a disk
- Copy the current BIOS code from the flash memory to a disk file as a backup, in the event that an upgrade cannot be successfully completed
- Compare the BIOS in the flash device with a file to make sure the computer has the correct version

The upgrade utility ensures that the upgrade BIOS extension matches the target computer to prevent accidentally installing a BIOS for a different type of computer.

3.1.3 Plug and Play: PCI Auto-configuration

The PCI auto-configuration utility operates in conjunction with the Setup program to let you insert and remove PCI cards without user configuration (Plug and Play). When you turn on the computer after adding a PCI card, the BIOS automatically configures interrupts, I/O space, and other parameters. Any interrupts set to "available" in Setup are considered free for use by PCI add-in cards. PCI interrupts are distributed to available ISA interrupts that have not been assigned to an ISA card or to system resources. The assignment of PCI interrupts to ISA IRQs is nondeterministic. An ISA device cannot share an interrupt allocated to an add-in PCI card.

PCI configuration information is stored in ESCD format. You can clear the ESCD data by moving the CMOS Clear jumper (see Section 1.15.3).

For information about the version of PCI and Plug and Play supported by this BIOS, see Section 5.1. You can obtain copies of the specifications from the Intel World Wide Web site (see Section 5.2). Peer-to-peer hierarchical PCI bridge is supported, and by using an OEM-supplied option ROM or TSR, a PCI-to-PCMCIA bridge capability is possible as well.

3.1.4 PCI IDE Support

If you select "Auto" in Setup, the BIOS automatically sets up the two local bus IDE connectors with independent I/O channel support. The IDE interface supports hard drives up to PIO Mode 4 and recognizes any ATAPI devices, including CD-ROM drives and tape drives (see Section 5.1 for the supported version of ATAPI). The BIOS determines the capabilities of each drive and configures them to optimize capacity and performance. To take advantage of the high capacities typically available today, hard drives are automatically configured for Logical Block Addressing (LBA) and to PIO Mode 3 or 4, depending on the capability of the drive. You can override the auto-configuration options by specifying manual configuration in Setup. The ATAPI Specification recommends that ATAPI devices be configured as shown in Table 37.

Table 37. Recommendations for Configuring an ATAPI Device

	Primary Cable		Secondary Cable	
	Drive 0	Drive 1	Drive 0	Drive 1
Normal, no ATAPI	ATA			
Disk and CD-ROM for enhanced IDE systems	ATA		ATAPI	
Legacy IDE system with only one cable	ATA	ATAPI		
Enhanced IDE system with a CD-ROM and a tape or two CD-ROMs	ATA		ATAPI	ATAPI

3.1.5 ISA Plug and Play

If you select in Setup to boot with a Plug and Play OS (see Section 3.2.4.1), the BIOS autoconfigures only ISA Plug and Play cards that are required for booting (initial program load devices). If you select to not boot with a Plug and Play OS, the BIOS auto-configures all Plug and Play ISA cards.

3.1.6 ISA Legacy Devices

Since ISA legacy devices are not auto-configurable, the resources for them must be reserved. You can reserve resources in the Setup program or with an ISA configuration utility (see Section 5.2 for a Web site address).

The computer's configuration information is stored in ESCD format. You can clear the ESCD data by moving the CMOS Clear jumper (see Section 1.15.3).

3.1.7 Desktop Management Interface

Desktop Management Interface (DMI) is a method of managing computers in an enterprise. The main component of DMI is the Management Information Format (MIF) database, which contains information about the computer and its components. Using DMI, a system administrator can obtain the system types, capabilities, operational status, installation date, and other information about the computer's components. The DMI specification requires that certain information about the computer's motherboard be made available to an applications program. This information is located in a series of data structures which are accessed in various ways by the DMI service layer. Component instrumentation allows the service layer to gain access to information stored in the general-purpose area of non-volatile RAM. The MIF database defines the data and provides the method for accessing the information.

The BIOS support for DMI enables the maximum benefit from applications such as LANDesk Client Manager from Intel. The BIOS stores and can report on the following types of DMI information:

- BIOS data, such as the BIOS revision level
- Fixed information, such as data about the motherboard, peripherals, serial numbers and asset tags, etc.
- Information discovered during bootup, such as memory size, cache size, processor speed, etc.
- Dynamic information, such as event detection

An OEM can use a utility that makes DMI calls to program system and chassis-related information into the Flash memory, so the BIOS can also report that information. Once this information is written, it is locked (read-only).

Intel can provide a utility for making DMI calls to the BIOS. The latest DMI specification is available from Intel (see Section 5.2) and other sites.

DMI does not work directly under non-Plug and Play operating systems (e.g., Windows NT). However, the BIOS supports a DMI table interface for such operating systems. Using this support, a DMI service-level application running on a non-Plug and Play OS can access the DMI BIOS information.

3.1.8 Advanced Power Management

The BIOS supports Advanced Power Management (APM); see Section 5.1 for the version supported. You can initiate the energy saving Standby mode in these ways:

- Optional front panel Sleep/Resume button
- Prolonged inactivity; the timeout period is adjustable in the Setup program

When in Standby mode, the motherboard reduces power consumption by using the processor's System Management Mode (SMM) capabilities and by spinning down hard drives and reducing power to or turning off VESA DPMS-compliant monitors. In Setup you can select the DPMS mode to use for the monitor: Standby, Suspend, or Disabled.

While in Standby mode, the computer retains the ability to respond to external interrupts; it can service requests such as incoming faxes or network messages while unattended. Any keyboard or mouse activity brings the computer out of Standby mode and immediately restores power to the monitor.

APM is enabled in the BIOS by default; however, the computer must be configured with an OS-dependent APM driver for the power-saving features to take effect. For example, Windows 95 enables APM automatically upon detecting the presence of the APM BIOS.

3.1.9 Language Support

The BIOS Setup program and help messages can be supported in 32 languages. Five languages are available at this time: American English, German, Italian, French, and Spanish. The BIOS includes extensions to support the Kanji character set and other non-ASCII character sets. Translations of other languages may become available at a later date.

The default language is American English, which is always present unless another language is programmed into the BIOS using the Flash Memory Update Program (FMUP.EXE). See Section 5.2 for information about downloading FMUP and other utilities.

3.1.10 Boot Options

Booting from CD-ROM is supported in adherence to the "El Torito" bootable CD-ROM format specification developed by Phoenix Technologies and IBM. Under the Boot Screen field in Setup, CD-ROM is one of four possible boot devices, which are defined in priority order. The default settings are:

- First boot device Removable devices (floppy drive)
- Second boot device Hard drive
- Third boot device CD-ROM
- Fourth boot device Network

If you select CD-ROM as the boot device, it must be the first device.

■ NOTE

A copy of the "El Torito" specification is available on the Phoenix Technologies Web site http://www.ptltd.com/techs/specs.html.

In Setup you can also select the network as a boot device, which allows booting from a network add-in card with a remote boot ROM installed.

3.1.11 OEM Logo or Scan Area

The motherboard supports a 4 KB programmable flash memory user area at memory location E8000-E8FFF. You can use this area to display a custom OEM logo during POST, or can insert a binary image that executes at certain times during the POST. A utility is available from Intel to assist with installing a logo into flash memory for display during POST. See Section 5.2.

3.1.12 USB Support

The USB connectors on the motherboard allow you to attach any of several USB devices as they become available. Typically, the device driver for USB devices will be managed by the OS. However, because keyboard and mouse support may be needed in the Setup program before the OS boots, the BIOS supports USB keyboards and mice. You can disable this support in the BIOS if necessary.

3.1.13 BIOS Setup Access Jumper

You can move the BIOS Setup Access jumper on the motherboard to enable or disable access to the Setup program. The default is for access to be enabled. See Section 1.15.4 for the specific pins on which to place the jumper.

3.1.14 Recovering BIOS Data

Some types of failure can destroy the BIOS data. For example, the data could be lost if a power outage occurs while your are updating the BIOS in Flash memory. You can recover the BIOS data from a diskette by changing the setting of the BIOS Recovery jumper (see Section 1.15.5).

To create a BIOS recovery diskette, you must make a bootable DOS diskette and place the recovery files on it. The recovery files are available from Intel. See Section 5.2.

To recover the BIOS, turn off the computer and move the jumper to the BIOS recovery setting. Insert the bootable BIOS recovery diskette in drive A:. Boot the computer to recover the BIOS. Two beeps and the end of floppy access to drive A: indicate a successful BIOS recovery. After a successful recovery, turn off the computer by holding down the power button for at least four seconds. Then return the jumper to the original pins to restore normal operation. A series of continuous beeps indicates that the recovery operation failed.

→ NOTE

No video is displayed during the recovery process.

3.2 BIOS Setup Program

The Setup program lets you modify the configuration for most basic changes without opening the computer. Setup is accessible only during the Power-on Self Test (POST). To enter Setup, press the <F2> key after the POST memory test has begun and before boot begins. See Section 1.15.4 for information on placing the jumper that prevents user access to Setup for security purposes.

3.2.1 Overview of the Setup Menu Screens

Table 38 lists the screens displayed by the Setup program. Setup initially displays the Main menu screen. In each screen there are options for modifying the computer's configuration. Select a menu screen by pressing the left $<\leftarrow>$ or right $<\rightarrow>$ arrow keys. Use the up $<\uparrow>$ or down $<\downarrow>$ arrow keys to select items in a screen. Use the <Enter> key to select a sub-menu. After you have selected an item, use the <+> and <-> keys to modify the setting.

Table 38. Overview of the Setup Menu Screens

Setup Menu Screen	Description
Main	Set up and modify some of the basic options of a PC, such as time, date, diskette drives, and hard drives.
Advanced	Modify the more advanced features of a PC, such as peripheral configuration and advanced chipset configuration.
Security	Specify passwords that can be used to limit access to the computer.
Power	Access and modify Power Management options.
Boot	Modify options that affect boot up, such as the boot sequence.
Exit	Save or discard changes.
Setup Subscreens	Description
Floppy Options	Used to configure diskette drive interface.
Primary IDE Master	Used to configure the primary master IDE drive.
Primary IDE Slave	Used to configure the primary slave IDE drive.
Secondary IDE Master	Used to configure the secondary master IDE drive.
Secondary IDE Slave	Used to configure the secondary slave IDE drive.
Resource Configuration	Used to reserve memory blocks and specific IRQs.
Peripheral Configuration	Used to configure peripherals.
Keyboard Configuration	Used to configure keyboard options.
Video Configuration	Used to configure onboard video resources.
DMI Event Logging	View and modify DMI event logs.
Hard Drive	Used to select hard drive.
Removable Devices	Used to select removable devices.

3.2.2 Main Menu

3.2.2.1 Processor Type

Displays processor type.

3.2.2.2 Processor Speed

Displays processor speed.

3.2.2.3 Cache RAM

Displays size of L2 cache.

3.2.2.4 Total Memory

Displays the total amount of RAM on the motherboard.

3.2.2.5 BIOS Version

Displays the version of the BIOS.

3.2.2.6 Language

Selects the current default language used by the BIOS. The options are:

- English (US) (**default**)
- Italiano
- Français
- Deutsch
- Español

3.2.2.7 System Time

Specifies the current time.

3.2.2.8 System Date

Specifies the current date. Select the month, day, and year from a pop-up menu.

3.2.2.9 Floppy Options Submenu

When selected, this is used to configure the diskette drives.

3.2.2.9.1 Diskette A:

Specifies the capacity and physical size of diskette drive A:. The options are:

- Disabled
- 360 KB, 5.25 inch
- 1.2 MB, 5.25 inch
- 720 KB, 3.5 inch
- 1.44/1.25 MB, 3.5 inch (**default**)
- 2.88 MB, 3.5 inch

3.2.2.9.2 Diskette B:

Specifies the capacity and physical size of diskette drive B:. The options are:

- Disabled (**default**)
- 360 KB, 5.25 inch
- 1.2 MB, 5.25 inch
- 720 KB, 3.5 inch
- 1.44/1.25 MB, 3.5 inch
- 2.88 MB, 3.5 inch

3.2.2.9.3 Floppy Write Protect

Disables or enable write protect for the diskette drive(s). The options are:

- Disabled (default)
- Enabled

3.2.2.10 Primary IDE Master

Reports size of a connected IDE device. When selected, this displays the device configuration subscreen for the Primary IDE master interface.

3.2.2.11 Primary IDE Slave

Reports size of a connected IDE device. When selected, this displays the device configuration subscreen for the Primary IDE slave interface.

3.2.2.12 Secondary IDE Master

Reports size of a connected IDE device. When selected, this displays the device configuration subscreen for the Secondary IDE master interface.

3.2.2.13 Secondary IDE Slave

Reports size of a connected IDE device. When selected, this displays the device configuration subscreen for the Secondary IDE slave interface.

3.2.3 Primary/Secondary IDE Master/Slave Configuration Submenus

Used to manually configure the hard drive or have the computer automatically configure it.

3.2.3.1 Type

Selects the drive type that corresponds to the drive installed in your system. If set to User, the number of cylinders, heads, and sectors can be modified. The options are:

- None
- ATAPI Removable
- IDE Removable (for example an LS-120 drive)
- CD-ROM
- User
- Auto (default)

3.2.3.2 **Cylinders**

If device configuration is set to Auto, this field reports the number of cylinders for your hard disk and cannot be modified. If IDE Device Configuration is set to User, you must type the correct number of cylinders for your hard disk.

3.2.3.3 Heads

If device configuration is set to Auto, this field reports the number of heads for your hard disk and cannot be modified. If IDE Device Configuration is set to User, you must type the correct number of heads for your hard disk.

3.2.3.4 Sectors

If device configuration is set to Auto, this field reports the number of sectors for your hard disk and cannot be modified. If IDE Device Configuration is set to User, you must type the correct number of sectors for your hard disk.

3.2.3.5 **Maximum Capacity**

Reports the maximum capacity of your hard disk, which is calculated from the number of cylinders, heads, and sectors. There are no options.

Multi-Sector Transfers 3.2.3.6

Determines the number of sectors per block for multiple sector transfers. The options are:

- Disabled
- 2 Sectors
- 4 Sectors
- 8 Sectors
- 16 Sectors (**default**)

Check the specifications for your hard disk drive to determine which setting provides optimum performance for your drive.

3.2.3.7 **LBA Mode Control**

Specifies the IDE translation mode. LBA causes logical block addressing to be used in place of cylinders, heads, and sectors. The options are:

- Disabled
- Enabled (**default**)

CAUTION

Do not change the IDE translation mode from the option selected when the hard drive was formatted. Changing the option after formatting can result in corrupted data.

3.2.3.8 32 Bit I/O

Enables or disables 32 bit IDE data transfers. The options are:

- Disabled (**default**)
- Enabled

3.2.3.9 Transfer Mode

Sets the transfer mode for the IDE interface. The options are:

- Standard
- Fast PIO 1
- Fast PIO 2
- Fast PIO 3
- Fast PIO 4 (**default**)

3.2.3.10 Ultra DMA

Sets the Ultra DMA mode for the hard disk drive. The options are:

- Disabled (default)
- Mode 0
- Mode 1
- Mode 2

3.2.4 Advanced Menu

3.2.4.1 Plug & Play O/S

Select Yes if a Plug and Play operating system is being used. The options are:

- No
- Yes (default)

3.2.4.2 Reset Configuration Data

Used to clear the computer's configuration data. The options are:

- No (default)
- Yes

3.2.4.3 Memory Cache

The options are:

- Disabled
- Enabled (**default**)

3.2.4.4 Memory Bank 0

This status field reports the size and type of the memory module in bank 0. There are no options.

3.2.4.5 Memory Bank 1

This status field reports the size and type of the memory module in bank 1. There are no options.

3.2.4.6 Resource Configuration Submenu

3.2.4.6.1 Memory Reservation

Reserves specific upper memory blocks for use by legacy ISA devices. The options are:

•	C800 - CBFF	Available (default) Reserved
•	CC00- CFFF	Available (default) Reserved
•	D000 - D3FF	Available (default) Reserved
•	D400 - D7FF	Available (default) Reserved
•	D800 - DBFF	Available (default) Reserved
•	DC00 - DFFF	Available (default) Reserved
•	Memory hole	Disabled (default) Conventional Extend

• Memory hole Disabled (**default**) | Conventional | Extended

3.2.4.6.2 IRQ Reservation

Reserve specific IRQs for use by legacy ISA devices. The options are:

	_	
•	IRQ3	Available Reserved
•	IRQ4	Available Reserved
•	IRQ5	Available Reserved
•	IRQ7	Available Reserved
•	IRQ9	Available Reserved
•	IRQ10	Available Reserved
•	IRQ11	Available Reserved
•	IRQ15	Available Reserved

An * (asterisk) next to an IRQ indicates an IRQ conflict.

3.2.4.7 Peripheral Configuration Submenu

3.2.4.7.1 Serial Port A:

Used to configure Serial Port A:. The options are:

- Disabled
- Enabled
- Auto (Setup assigns the first free COM port, normally COM1, 3F8h, IRQ4) (**default**)

An * (asterisk) indicates a conflict with another device.

3.2.4.7.2 Serial Port B:

Used to configure Serial Port B:. The options are:

- Disabled
- Enabled
- Auto (Setup assigns the first free COM port, normally COM2, 2F8h, IRQ3) (**default**)

An * (asterisk) indicates a conflict with another device.

⇒ NOTE

If you specifically set either serial port address, that address will not appear in the list of options for the other serial port. If an ATI mach32[†] or an ATI mach64[†] video controller is active (as an add-in card), the COM4, 2E8h address will not appear in the list of options for either serial port.

3.2.4.7.3 Mode:

Sets the mode for Serial Port B: for normal (COM 2) or infrared applications. The options are:

- Normal (**default**)
- IrDA
- ASK-IR

3.2.4.7.4 Parallel Port

Used to configure the parallel port. The options are:

- Disabled
- Enabled
- Auto (Setup assigns LPT1, 378h, IRQ7) (**default**)

An * (asterisk) indicates a conflict with another device.

3.2.4.7.5 Mode

Selects the mode for the parallel port. The options are:

- Output only (operates in AT-compatible mode)
- Bi-directional (operates in bidirectional PS/2-compatible mode) (**default**)
- EPP (Extended Parallel Port, a high-speed bidirectional mode)
- ECP (Enhanced Capabilities Port, a high-speed bidirectional mode)

3.2.4.7.6 Floppy Disk Controller

Configures the floppy disk controller. The options are:

- Disabled
- Enabled (**default**)

3.2.4.7.7 IDE Controller

Configures the IDE controller. The options are:

- Disabled
- Primary
- Secondary
- Both (primary and secondary) (**default**)

3.2.4.7.8 Audio

Enables or disables the optional onboard audio subsystem. The options are:

- Disabled
- Enabled (**default**)

3.2.4.8 Keyboard Features Submenu

3.2.4.8.1 Numlock

Sets the power on state of the Numlock feature on the numeric keypad of your keyboard. The options are:

- Auto (**default**)
- On
- Off

3.2.4.8.2 Key Click

Enables the key click option. The options are:

- Disabled (**default**)
- Enabled

3.2.4.8.3 Keyboard Auto-repeat Rate

Selects the key repeat rate. The options are:

- 30/sec (**default**)
- 26.7/sec
- 21.8/sec
- 18.5/sec
- 13.3/sec
- 10/sec
- 6/sec
- 2/sec

3.2.4.8.4 Keyboard Auto-repeat Delay

Selects the delay before key repeat. The options are:

- ½ sec
- ½ sec (default)
- 3/4 sec
- 1 sec

3.2.4.9 Video Configuration Subscreen

3.2.4.9.1 Palette Snooping

Controls the ability of a primary PCI graphics controller to share a common palette with an ISA add-in video card. The options are:

- Disabled (**default**)
- Enabled

3.2.4.10 DMI Event Logging Sub-menu

3.2.4.10.1 Event Log Capacity

Indicates if there is space available in the event log. There are no options.

3.2.4.10.2 Event Log Validity

Indicates if the contents of the event log are valid. There are no options.

3.2.4.10.3 View DMI event log

Enables viewing of DMI event log. Press <Enter> to view the event log. If there are no event logs stored, the screen will read "No unread events".

3.2.4.10.4 Clear all DMI event logs

Clears the DMI Event Log after rebooting. The options are:

- No (default)
- Yes

3.2.4.10.5 Event Logging

Enables Logging of DMI events. The options are:

- Disabled
- Enabled (**default**)

3.2.4.10.6 Mark DMI Events as read

Used to mark all DMI events as read. Press <Enter> to access the confirmation dialog box.

3.2.5 Security Menu

3.2.5.1 User Password Is

Reports if there is a User password set. There are no options.

3.2.5.2 Supervisor Password Is

Reports if there is a Supervisor password set. There are no options.

3.2.5.3 Set User Password

Sets the User password. The user will be asked to enter the new password and confirm the new password. The password can be up to seven alphanumeric characters.

3.2.5.4 Set Supervisor Password

Sets the Supervisor password. The user will be asked to enter the new password and confirm the new password. The password can be up to seven alphanumeric characters.

3.2.5.5 Unattended Start

When enabled, the computer will boot; however, if the computer is password protected, the keyboard will be locked. Enter the user password to unlock the computer. The user password is also required to boot from the floppy drive. The options are:

- Disabled (**default**)
- Enabled

3.2.6 Power Menu

3.2.6.1 Power Management

Enables or disables the BIOS Advanced Power Management feature. The options are:

- Disabled (default)
- Enabled

When set to disabled, the fields for: Inactivity Timer, Fixed Disk, and Video will not appear.

3.2.6.2 Inactivity Timer

Sets the amount of time before the computer enters standby mode. The options are:

- Off (default)
- 1 Minute
- 2 Minutes
- 4 Minutes
- 6 Minutes
- 8 Minutes
- 12 Minutes
- 16 Minutes

3.2.6.3 Fixed Disk

Enables the hard drive to be power-managed during Standby and Suspend. The options are:

- Disabled
- Enabled (default)

3.2.6.4 Video

Enables video to be power managed during Standby and Suspend. The options are:

- Disabled
- Enabled (**default**)

3.2.7 Boot Menu

3.2.7.1 Restore on AC/Power Loss

Controls the action of the computer following a power failure. The options are:

- Stay Off (Keeps power off until the power button is pressed, however, the computer powers up for 300 ms when AC power is first applied to the board.)
- Last State (Restores the previous power state before the power was lost, however, the computer powers up for 300 ms when AC power is first applied to the board.)
- Power On (**default**) (System will always power on.)

3.2.7.2 On Modem Ring

Wakes up the computer when an incoming call is detected on an installed modem. The options are:

- Stay Off
- Power On (**default**)

3.2.7.3 On LAN

Controls how the computer responds to a LAN wake-up event. The options are:

- Stay Off
- Power On (**default**)

3.2.7.4 On PME

Controls how the computer responds to a PCI Power Management Enable wake-up event. The options are:

- Stay Off
- Power On (**default**)

3.2.7.5 Scan User Flash Area

Allows BIOS to scan the flash memory for user binaries. The options are:

- Disabled (**default**)
- Enabled

3.2.7.6 First Boot Device

Reports the category of bootable device. The options are one (and only one) of the following:

- Removable devices
- Hard Drive
- ATAPI CD-ROM devices
- Network boot

3.2.7.7 Second Boot Device

Reports the category of bootable device. The options are one (and only one) of the following:

- Removable devices
- Hard Drive
- ATAPI CD-ROM devices
- Network boot

3.2.7.8 Third Boot Device

Reports the category of bootable device. The options are one (and only one) of the following:

- Removable devices
- Hard Drive
- ATAPI CD-ROM devices
- Network boot

3.2.7.9 Fourth Boot Device

Reports the category of bootable device. The options are one (and only one) of the following:

- Removable devices
- Hard Drive
- ATAPI CD-ROM devices
- Network boot

3.2.7.10 Hard Drive

This screen lists the available hard drive devices. The computer attempts to boot the operating system from the first hard-drive in this list. If no operating system is found, the computer tries the next drive listed until an operating system is found.

The options are any available hard drives. Press <Enter> for a list of available devices. To select the boot device, use the up <1> or down <4> arrow keys. Press <+> to move the device up the list, or <-> to move it down the list. Press <Esc> to exit this menu.

3.2.7.11 Removable Devices

This screen lists the available removable devices. The operating system assigns drive letters to these devices in the order listed. You may change the sequence and therefore the drive lettering for these devices by pressing the <+> or <-> keys.

The options are any available removable devices. Press <Enter> for a list of available devices. To select the boot device, use the up < \uparrow > or down < \downarrow > arrow keys. Press <+> to move the device up the list, or <-> to move it down the list. Press <Esc> to exit this menu.

3.2.8 Exit Menu

This section describes how to exit Setup with or without saving the changes you have made to battery-backed CMOS RAM.

3.2.8.1 Exit Saving Changes

Exits Setup and saves the changes in CMOS RAM. You can also press the <F10> key anywhere in the Setup program to do this.

3.2.8.2 Exit Discarding Changes

Exits Setup program without saving any changes. This means that any changes you have made while in Setup are discarded and not saved. Pressing the <Esc> key in any of the four main screens will also exit and discard changes.

3.2.8.3 Load Setup Defaults

Returns all of the Setup options to their defaults. The default Setup values are loaded from the ROM table. You can also press the <F9> key anywhere in Setup to load the defaults.

3.2.8.4 Load Custom Defaults

Loads the setup settings from the Custom Defaults.

3.2.8.5 Save Custom Defaults

Normally, the BIOS reads the setup settings from battery backed CMOS RAM. If the CMOS RAM fails, the BIOS uses the Custom Defaults (if you have set them). If no Custom Defaults are set, the BIOS uses the factory defaults.

3.2.8.6 Discard Changes

Discards any changes made up to this point in Setup without exiting Setup. This selection loads the CMOS RAM values that were present when the computer was turned on.

4 Error Messages

4.1 BIOS Error Messages

Table 39. BIOS Error Messages

Error Message	Explanation
Diskette drive A error or Diskette drive B error	Drive A: or B: is present but fails the BIOS POST diskette tests. Check to see that the drive is defined with the proper diskette type in Setup and that the diskette drive is attached correctly.
Extended RAM Failed at offset: nnnn	Extended memory not working or not configured properly at offset nnnn.
Failing Bits: nnnn	The hex number nnnn is a map of the bits at the RAM address (in System, Extended, or Shadow memory) which failed the memory test. Each 1 in the map indicates a failed bit.
Fixed Disk 0 Failure or Fixed Disk 1 Failure or Fixed Disk Controller Failure	Fixed disk is not working or not configured properly. Check to see if fixed disk is attached properly. Run Setup be sure the fixed-disk type is correctly identified.
Incorrect Drive A type - run SETUP	Type of floppy drive A: not correctly identified in Setup.
Incorrect Drive B type - run SETUP	Type of floppy drive B: not correctly identified in Setup.
Invalid NVRAM media type	Problem with NVRAM (CMOS) access.
Keyboard controller error	The keyboard controller failed test. Try replacing the keyboard.
Keyboard error	Keyboard not working.
Keyboard error nn	BIOS discovered a stuck key and displays the scan code nn for the stuck key.
Keyboard locked - Unlock key switch	Unlock the system to proceed.
Monitor type does not match CMOS - Run SETUP	Monitor type not correctly identified in Setup.
Operating system not found	Operating system cannot be located on either drive A: or drive C:. Enter Setup and see if fixed disk and drive A: are properly identified.

Table 39. BIOS Error Messages (continued)

Error Message	Explanation		
Parity Check 1	Parity error found in the system bus. BIOS attempts to locate the address and display it on the screen. If it cannot locate the address, it displays ????.		
Parity Check 2	Parity error found in the I/O bus. BIOS attempts to locate the address and display it on the screen. If it cannot locate the address, it displays ????.		
Press <f1> to resume, <f2> to Setup</f2></f1>	Displayed after any recoverable error message. Press <f1> to start the boot process or <f2> to enter Setup and change any settings.</f2></f1>		
Previous boot incomplete - Default configuration used	Previous POST did not complete successfully. POST loads default values and offers to run Setup. If the failure was caused by incorrect values and they are not corrected, the next boot will likely fail. On systems with control of wait states, improper Setup settings can also terminate POST and cause this error on the next boot. Run Setup and verify that the wait-state configuration is correct. This error is cleared the next time the system is booted.		
Real-time clock error	Real-time clock fails BIOS test. May require board repair.		
Shadow Ram Failed at offset: nnnn	Shadow RAM failed at offset nnnn of the 64k block at which the error was detected.		
System battery is dead - Replace and run SETUP	The CMOS clock battery indicator shows the battery is dead. Replace the battery and run Setup to reconfigure the system.		
System cache error - Cache disabled	RAM cache failed the BIOS test. BIOS disabled the cache.		
System CMOS checksum bad - run SETUP	System CMOS has been corrupted or modified incorrectly, perhaps by an application program that changes data stored in CMOS. Run Setup and reconfigure the system either by getting the Default Values and/or making your own selections.		
System RAM Failed at offset: nnnn	System RAM failed at offset nnnn of in the 64k block at which the error was detected.		
System timer error	The timer test failed. Requires repair of system board.		

4.2 Port 80h POST Codes

During POST (Power-on Self Test), the BIOS generates diagnostic progress codes (POST codes) to I/O port 80h. If the POST fails, execution stops and the last POST code generated is left at port 80h. This code is useful for determining the point where an error occurred.

Displaying the POST codes requires the use of an add-in card (often called a POST card). The POST card can decode the port and display the contents on a medium such as a seven-segment display. These cards can be purchased from JDR Microdevices or other sources.

The following table provides the POST codes that can be generated by the motherboard's BIOS. Some codes are repeated in the table because that code applies to more than one operation.

Table 40. Port 80h Codes

Code	Description of POST Operation Currently In Progress
02h	Verify Real Mode
03h	Disable Non-Maskable Interrupt (NMI)
04h	Get CPU type
06h	Initialize system hardware
08h	Initialize chipset with initial POST values
09h	Set IN POST flag
0Ah	Initialize CPU registers
0Bh	Enable CPU cache
0Ch	Initialize caches to initial POST values
0Eh	Initialize I/O component
0Fh	Initialize the local bus IDE
10h	Initialize Power Management
11h	Load alternate registers with initial POST values
12h	Restore CPU control word during warm boot
13h	Initialize PCI Bus Mastering devices
14h	Initialize keyboard controller
16h	BIOS ROM checksum
17h	Initialize cache before memory autosize
18h	8254 timer initialization
1Ah	8237 DMA controller initialization
1Ch	Reset Programmable Interrupt Controller
20h	Test DRAM refresh
22h	Test 8742 Keyboard Controller
24h	Set ES segment register to 4 GB
26h	Enable A20 line
28h	Autosize DRAM
29h	Initialize POST Memory Manager
_	

Table 40. Port 80h Codes (continued)

Code	Description of POST Operation Currently In Progress	
2Ah	Clear 512 KB base RAM	
2Ch	RAM failure on address line xxxx	
2Eh	RAM failure on data bits xxxx of low byte of memory bus	
2Fh	Enable cache before system BIOS shadow	
30h	RAM failure on data bits xxxx of high byte of memory bus	
32h	Test CPU bus-clock frequency	
33h	Initialize POST Dispatch Manager	
34h	Test CMOS RAM	
35h	Initialize alternate chipset registers	
36h	Warm start shut down	
37h	Reinitialize the chipset (MB only)	
38h	Shadow system BIOS ROM	
39h	Reinitialize the cache (MB only)	
3Ah	Autosize cache	
3Ch	Configure advanced chipset registers	
3Dh	Load alternate registers with CMOS values	
40h	Set Initial CPU speed new	
42h	Initialize interrupt vectors	
44h	Initialize BIOS interrupts	
45h	POST device initialization	
46h	Check ROM copyright notice	
47h	Initialize manager for PCI Option ROMs	
(Rel. 5.1	and earlier)	
48h	Check video configuration against CMOS	
49h	Initialize PCI bus and devices	
4Ah	Initialize all video adapters in system	
4Bh	Display QuietBoot screen	
4Ch	Shadow video BIOS ROM	
4Eh	Display BIOS copyright notice	
50h	Display CPU type and speed	
51h	Initialize EISA board	
52h	Test keyboard	
54h	Set key click if enabled	
56h	Enable keyboard	
58h	Test for unexpected interrupts	
59h	Initialize POST display service	
5Ah	Display prompt "Press F2 to enter SETUP"	
5Bh	Disable CPU cache	

Table 40. Port 80h Codes (continued)

Code	Description of POST Operation Currently In Progress		
5Ch	Test RAM between 512 and 640 KB		
60h	Test extended memory		
62h	Test extended memory address lines		
64h	Jump to UserPatch1		
66h	Configure advanced cache registers		
67h	Initialize Multiprocessor APIC		
68h	Enable external and CPU caches		
69h	Setup System Management Mode (SMM) area		
6Ah	Display external L2 cache size		
6Ch	Display shadow-area message		
6Eh	Display possible high address for UMB recovery		
70h	Display error messages		
72h	Check for configuration errors		
74h	Test real-time clock		
76h	Check for keyboard errors		
7Ah	Test for key lock on		
7Ch	Set up hardware interrupt vectors		
7Eh	Initialize coprocessor if present		
80h	Disable onboard Super I/O ports and IRQs		
81h	Late POST device initialization		
82h	Detect and install external RS232 ports		
83h	Configure non-MCD IDE controllers		
84h	Detect and install external parallel ports		
85h	Initialize PC-compatible PnP ISA devices		
86h	Re-initialize onboard I/O ports		
87h	Configure motherboard configurable devices		
88h	Initialize BIOS Data Area		
89h	Enable Non-Maskable Interrupts (NMIs)		
8Ah	Initialize extended BIOS data area		
8Bh	Test and initialize PS/2 mouse		
8Ch	Initialize floppy controller		
8Fh	Determine number of ATA drives		
90h	Initialize hard-disk controllers		
91h	Initialize local-bus hard-disk controllers		
92h	Jump to UserPatch2		
93h	Build MPTABLE for multiprocessor boards		
94h	Disable A20 address line		
95h	Install CD-ROM for boot		

Table 40. Port 80h Codes (continued)

Code	Description of POST Operation Currently In Progress		
96h	Clear huge ES segment register		
97h	Fixup Multiprocessor table		
98h	Search for option ROMs. One long, two short beeps on checksum failure		
99h	Check for SMART Drive		
9Ah	Shadow option ROMs		
9Ch	Set up Power Management		
9Eh	Enable hardware interrupts		
9Fh	Determine number of ATA and SCSI drives		
A0h	Set time of day		
A2h	Check key lock		
A4h	Initialize typematic rate		
A8h	Erase F2 prompt		
AAh	Scan for F2 key stroke		
ACh	Enter SETUP		
AEh	Clear IN POST flag		
B0h	Check for errors		
B2h	POST done - prepare to boot operating system		
B4h	One short beep before boot		
B5h	Terminate QuietBoot		
B6h	Check password (optional)		
B8h	Clear global descriptor table		
B9h	Clean up all graphics		
BAh	Initialize DMI parameters		
BBh	Initialize PnP Option ROMs		
BCh	Clear parity checkers		
BDh	Display MultiBoot menu		
BEh	Clear screen (optional)		
BFh	Check virus and backup reminders		
C0h	Try to boot with INT 19h		
C1h	Initialize POST Error Manager (PEM)		
C2h	Initialize error logging		
C3h	Initialize error display function		
C4h	Initialize system error handler		

Table 40. Port 80h Codes (continued)

Code	Description of POST Operation Currently In Progress		
	The following are for the boot block in flash memory		
E0h	Initialize the chipset		
E1h	Initialize the bridge		
E2h	Initialize the CPU		
E3h	Initialize system timer		
E4h	Initialize system I/O		
E5h	Check force recovery boot		
E6h	Checksum BIOS ROM		
E7h	Go to BIOS		
E8h	Set Huge Segment		
E9h	Initialize Multiprocessor		
EAh	Initialize OEM special code		
EBh	Initialize PIC and DMA		
ECh	Initialize memory type		
EDh	Initialize memory size		
EEh	Shadow boot block		
EFh	System memory test		
F0h	Initialize interrupt vectors		
F1h	Initialize run-time Clock		
F2h	Initialize video		
F3h	Initialize beeper		
F4h	Initialize boot		
F5h	Clear Huge segment		
F6h	Boot to Mini DOS		
F7h	Boot to Full DOS		

5 Specifications and Online Support

5.1 Specifications

The motherboard complies with the following specifications:

Table 41. Compliance with Specifications

Specification	Description	Revision Level
APM	Advanced Power Management BIOS interface specification	Revision 1.1, September, 1993 Intel, Microsoft
ATA-33	Synchronous DMA Transfer Protocol specification (to be proposed as Ultra DMA/33 standard)	Revision 0.7, May 21, 1996 Quantum document no. 70-108412-1
ATX	ATX form factor specification	Revision 1.1, February 1996
DDC	Display Data Channel standard	Version 2, Revision 0, April 9, 1996 Video Electronics Standards Association
DMI	Desktop Management Interface BIOS specification	Version 2.0, October 16, 1995 American Megatrends Inc., Award Software International Inc., Dell Computer Corporation, Intel, Phoenix Technologies Ltd, SystemSoft Corporation
DPMS	Display Power Management Signaling	Revision 1.0 Video Electronics Standards Association
"El Torito"	Bootable CD-ROM format specification	Version 1.0, January 25, 1995 Phoenix Technologies, IBM Corporation
EPP	Enhanced Parallel Port	IEEE 1284 standard, Mode [1 or 2]
IrDA	Serial Infrared Physical Layer Link specification	Version 1.1, October 17, 1995 Infrared Data Association.
PCI	PCI Local Bus specification	Revision 2.1, June 1, 1995 PCI Special Interest Group
Plug and Play	Plug and Play BIOS specification	Version 1.0a, May 5, 1994 Compaq Computer Corp, Phoenix Technologies, Intel
UHCI	Universal Host Controller Interface	Revision 1.0
USB	Universal Serial Bus specification	Revision 1.0, January 15, 1996 Compaq, Digital Equipment Corporation, IBM PC Company, Intel, Microsoft, NEC, Northern Telecom

5.2 Online Support

Find information about Intel motherboards under "Product Info" or "Customer Support" at this World Wide Web site:

http://www.intel.com/

or at this FTP site:

ftp://ftp.intel.com/pub/bios/